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Online content-sharing platforms are popular in nowadays.
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Search is one of the most essential functions for platforms

An example of YouTube search.

Billions of videos on YouTube.

Millions of musics on Spotify.

Billions of photos on Instagram.

. . . and more.
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Item Retrieval is Hard.

Noisy and advertising messages

Short or no description

Can we conduct item retrieval without using noisy descriptive information?

J.-Y. Jiang et al. (UCLA & Google) End-to-End Deep Attentive Personalized Item Retrieval April 23, 2019 4 / 16



Introduction EDAM: The Proposed Method Experiments Conclusions

Users can have different intents for a query.

“Tomorrow”

Silverchair (1985) Chris Young (2011)

Personalization is important for the retrieval performance.
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Comparisons between Different Retrieval Tasks

Personalized Task Descriptive Information Meta Information

Ad-hoc Search 3 (documents) 7

Web Search 3 (web pages) 7

Microblog Search 3 (tweets) 3 (hashtags)
Product Search 3 (product reviews) 3 (categories)

Item Search 7 3 (content providers)
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Our Proposed Framework
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Query-aware Attention with External Key Memory

Query embedding space can be much different from the item one.

Given a query q, the attention weight of a historical item v can be:

αk(v , q) =
exp

(
qTkv/

√
d
)

∑
v ′∈HV (u) exp

(
qTkv ′/

√
d
) .

kv is the external key embedding.

The historical item representation hV can be re-written as

hV =
∑

v∈HV (u)

αk(v , q) · v .

Ultimate Features

Representations of historical items, providers, and the query.
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Classification as Ranking and Auxiliary Ranker
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Item key embeddings can be considered as ranking weights for regularization.
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Locality Preservation

Context information in sessions can be leveraged.
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Experimental Datasets and Protocol

User logs from a large video platform at Google

Videos as items and channels as content providers.
400 most recent accessed items for 184M users.

90% of users are randomly sampled as training users.

The remaining 10% of users are considered testing users for evaluation.

Evaluate the performance with Success Rate at K (SR@K)

search history
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Experimental results

Metrics
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Performance with different lengths of historical items

Number of Historical Items
0~50 51~100 101~200 201~400
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Ablation Study on Model Components

Method
Length of User History

Overall [0, 50] [51, 100] [101, 200] [201, 400]

EDAM 0.4097 0.3297 0.3718 0.3822 0.4196
without Auxiliary Ranking 0.3973 0.3031 0.3522 0.3696 0.4089

without Locaility Preservation 0.4039 0.3143 0.3591 0.3729 0.4155
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Performance on Key Embeddings

Method
Length of User History

Overall [0, 50] [51, 100] [101, 200] [201, 400]

ZAM 0.3957 0.3155 0.3570 0.3709 0.4056

EDAM (Item) 0.4097 0.3297 0.3718 0.3822 0.4196
EDAM (Provider) 0.3808 0.3106 0.3513 0.3608 0.3892
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Conclusions

We propose a novel approach of personalized item retrieval.

Independent item key embeddings improve the attention quality.

Auxiliary ranker further sharpens the item key embeddings.

Locality preservation as regularization also benefit performance.

Significant improvements on a large-scale commercial dataset.

Analysis shows the effectiveness and robustness of our approach.

Questions?
Or ask me by email: jyunyu@cs.ucla.edu
Personal Site: https://jyunyu.csie.org/
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