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Introduction
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Online content-sharing platforms are popular in nowadays.
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Introduction
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Search is one of the most essential functions for platforms
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An example of YouTube search.
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Noisy and advertising messages

Can we conduct item retrieval without using noisy descriptive information?J
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Users can have different intents for a query.

Chris Young (2011)

Silverchair (1985)

Personalization is important for the retrieval performance. J
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Comparisons between Different Retrieval Tasks

Personalized Task

Descriptive Information

Meta Information

Ad-hoc Search
Web Search

v (documents)
v (web pages)

X
X

Microblog Search v (tweets) v (hashtags)
Product Search v (product reviews) v (categories)
Item Search X v (content providers)
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EDAM: The Proposed Method
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Our Proposed Framework

Label Item

Serving

Search Results
! Classification
| as Ranking

| Ttem Key [~
fEtnbedding‘ .

Fully-connected ‘
Layer
. Historical Item Representation
Historical Provider
Representation Item Attention
Item Key
Provider Attention| Embedding
Provider AN A& 0 AN 0 = A L7 ! Ttem
Embedding Embedding

v
Preservation

VIHV (u)]i

1
History Content Providers Query Tokens Histor;

April 23,2019 7 /16

End-to-End Deep Attentive Personalized Item Retrieval

A & Google)

Jiang et al.



EDAM: The Proposed Method
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Query-aware Attention with External Key Memory

Query embedding space can be much different from the item one. J

@ Given a query g, the attention weight of a historical item v can be:
exp (quv/ ﬂ)
ZV’EHV(U) eXp (quvl/\/g)

@ k, is the external key embedding.

ak(v,q) =

@ The historical item representation hy can be re-written as

hy = Z ak(v,q) - v.

vEHY (u)

Ultimate Features
Representations of historical items, providers, and the query.
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EDAM: The Proposed Method
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Classification as Ranking and Auxiliary Ranker
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@ Item key embeddings can be considered as ranking weights for regularization.
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EDAM: The Proposed Method
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Locality Preservation

Context information in sessions can be leveraged. J
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Experiments
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Experimental Datasets and Protocol

@ User logs from a large video platform at Google

e Videos as items and channels as content providers.
@ 400 most recent accessed items for 184M users.

@ 90% of users are randomly sampled as training users.

e The remaining 10% of users are considered testing users for evaluation.

e Evaluate the performance with Success Rate at K (SRQK)

item history laEel

q2 4
. 1 "
search history qutry
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Experimental results
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Performance with different lengths of historical items
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Ablation Study on Model Components

Length of User History
Method Overall [0,50] [51, 100] [101, 200] [201, 400]
EDAM 0.4007 03207 0.3718 0.3822  0.4196

without Auxiliary Ranking 0.3973 0.3031 0.3522 0.3696 0.4089
without Locaility Preservation | 0.4039 0.3143  0.3591 0.3729 0.4155
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Performance on Key Embeddings

Method Length of User History
Overall [0, 50] [51, 100] [101, 200] [201, 400]
ZAM 0.3957 0.3155  0.3570 0.3709 0.4056
EDAM (Item) 0.4097 0.3297 0.3718 0.3822 0.4196
EDAM (Provider) | 0.3808 0.3106  0.3513 0.3608 0.3892
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Conclusions
.

Conclusions

We propose a novel approach of personalized item retrieval.
Independent item key embeddings improve the attention quality.
Auxiliary ranker further sharpens the item key embeddings.
Locality preservation as regularization also benefit performance.

Significant improvements on a large-scale commercial dataset.

Analysis shows the effectiveness and robustness of our approach.

Questions?
Or ask me by email: jyunyu@©cs.ucla.edu
Personal Site: https://jyunyu.csie.org/
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