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ABSTRACT
Modern online content-sharing platforms host billions of items
like music, videos, and products uploaded by various providers for
users to discover items of their interests. To satisfy the information
needs, the task of effective item retrieval (or item search ranking)
given user search queries has become one of the most fundamental
problems to online content-sharing platforms. Moreover, the same
query can represent different search intents for different users, so
personalization is also essential for providing more satisfactory
search results. Different from other similar research tasks, such
as ad-hoc retrieval and product retrieval with copious words and
reviews, items in content-sharing platforms usually lack sufficient
descriptive information and related meta-data as features. In this
paper, we propose the end-to-end deep attentive model (EDAM)
to deal with personalized item retrieval for online content-sharing
platforms using only discrete personal item history and queries.
Each discrete item in the personal item history of a user and its
content provider are first mapped to embedding vectors as con-
tinuous representations. A query-aware attention mechanism is
then applied to identify the relevant contexts in the user history
and construct the overall personal representation for a given query.
Finally, an extreme multi-class softmax classifier aggregates the
representations of both query and personal item history to provide
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personalized search results. We conduct extensive experiments on a
large-scale real-world dataset with hundreds of million users from
a large video media platform at Google. The experimental results
demonstrate that our proposed approach significantly outperforms
several competitive baseline methods. It is also worth mentioning
that this work utilizes a massive dataset from a real-world com-
mercial content-sharing platform for personalized item retrieval to
provide more insightful analysis from the industrial aspects.
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1 INTRODUCTION
Nowadays, online content-sharing platforms, such as music stream-
ing system, photo and video sharing platform, and online e-commerce,
have already become one of the most indispensable media in our
lives [6]. However, enormous amounts of users are also accompa-
nied with myriad uploaded contents. To ease the burden of discov-
ering suitable contents from copious corpora, item search becomes
one of the most essential functions to derive relevant items to cer-
tain queries and satisfy users’ information needs.

Compared to ad-hoc search tasks [28], queries in item retrieval
are usually short and vague while the user search intents can be
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Figure 1: An example that users have different search intents
with the same query for item retrieval.

more ambiguous. Figure 1 illustrates an example of an ambiguous
query and distinct search intents for two users. More specifically,
a certain query can be simultaneously relevant to multiple items
while users can have distinct search intents for the query. Hence,
the search results should be personalized for different users with
their information needs. Moreover, the shortage of descriptive in-
formation for both users and items further increases the difficulty
of personalization. Hence, personalized item retrieval remains an
important research problem, especially for commercial platforms
with millions of daily users.

One of the feasible solutions for personalized retrieval is to ex-
ploit user history because user historical behaviors can reveal user
interests while the idea has already been studied in some research
tasks, such as product search and ad-hoc search. For example, previ-
ous studies [2, 3, 16] summarize the reviews of purchased products
into continuous user features for personalized product search. The
words in clicked documents can be utilized to recognize user search
intents for personalized ad-hoc search [5, 9, 34, 36]. However, there
are few existing studies that address personalized item retrieval
with user history while most of the previous works focus on utiliz-
ing descriptive document contents. Moreover, personalized ad-hoc
and product search methods require descriptive information like
reviews that are usually unavailable for items in content-sharing
platforms. Hence, although existingmethods have demonstrated the
effectiveness of descriptive information, it is necessary for person-
alized item retrieval to obtain user features without any additional
information of items in user history.

Without any descriptive information, machine learning mod-
els require to learn continuous representations for items as the
inputs. To derive decent item representations, some previous stud-
ies [14] propose to pre-train the item embeddings and then learn
the retrieval models with fixed item representations. However, pre-
trained embeddings and multi-stage approaches lead to several
drawbacks for item retrieval in real-world content-sharing plat-
forms. First, a massive amount of new items are uploaded to the
system every day so that the pre-training needs to be frequently
started over to avoid cold-start problems. Second, fixed item em-
beddings degenerates the retrieval model so that the item represen-
tations cannot be flexibly optimized with queries and the objective
of the retrieval task. Last but not least, multi-stage approaches can
be too complicated to be integrated into sophisticated real-world

Table 1: Comparisons between different personalized search
tasks.

Personalized Task Descriptive Information Meta Information
Ad-hoc Search ✓ (documents) ✗

Web Search ✓ (web pages) ✗

Microblog Search ✓ (tweets) ✓ (hashtags)
Product Search ✓ (product reviews) ✓ (categories)
Item Search ✗ ✓ (content providers)

production pipelines with numerous components. Therefore, an
end-to-end approach for item retrieval is required for industrial
content-sharing platforms.

In this paper, we propose the end-to-end deep attentive model
(EDAM) to address the problems of personalized item retrieval for
online content-sharing platforms. Without any descriptive informa-
tion, we learn a continuous representation for each item and each
content provider so that the query-aware attention mechanism can
derive historical item and content provider representations from
personal item history. In addition, we propose to utilize external
key embeddings for estimating item attention weights in a differ-
ent latent space. The sequential knowledge in user history can
be also learned from preserving item locality with context items.
Experiments on a large-scale dataset from a real-world commer-
cial content-sharing platform demonstrate that EDAM significantly
outperforms conventional baseline methods in related personalized
search tasks across different evaluation metrics and history lengths.

In the literature, although none of the previous studies focuses
on personalized item retrieval for online content-sharing platforms,
personalized product search [2, 3, 16] is one of the most related
tasks that consider using descriptive information like product re-
views. More precisely, the descriptive information can interpret
and link both users and products. The structured information [11,
12, 27, 32, 42] and context images [13] can be also applied into per-
sonalization. However, all of them rely on descriptive information.
Some studies [4, 20, 23, 41] conduct feature engineering and learn a
separate ranking model. Personalized listing search [14, 17] is also
related to our work, but they highly count on heterogeneous meta
data and pre-trained embeddings. In addition to personalized prod-
uct search, personalization in ad-hoc search [5, 9, 18, 29, 34, 36–38]
and microblog search [31, 40] are also relevant to personalized item
retrieval. However, all of the existingmethods require descriptive in-
formation while some models need to be separately learned. Table 1
summarizes the comparisons between different personalized search
tasks. Item recommendation with queries [7, 8, 10, 25, 26, 33, 35]
and neural information retrieval [15, 21, 30, 43] can be also treated
as related tasks to this work.

Our contributions can be summarized as:

• To the best of our knowledge, this work is the pioneer of personal-
ized item search retrieval with queries for online content-sharing
platforms without considering any descriptive information. In
addition, this is the first study using the datasets of real-world
commercial media-sharing platforms for experiments.

• We propose the end-to-end deep attentive model (EDAM) for per-
sonalized search item retrieval. The embeddings of both items and
their providers can be appropriately learned from user history,
thereby deriving historical representations with query-aware
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attention mechanism and external item key embeddings. The se-
quential knowledge in user history can be also learned by locality
preservation. In addition, the proposed end-to-end framework
can be easily integrated into real-world production systems.

• Experiments were conducted on a dataset from one of the largest
online content-sharing platforms. The experimental results indi-
cate that EDAM significantly outperforms several conventional
baselines. An in-depth analysis also shows the robustness of
EDAM and its components.

2 END-TO-END DEEP ATTENTIVE MODEL
FOR PERSONALIZED ITEM RETRIEVAL

In this section, we first formally define the objective of this pa-
per, and then introduce our proposed approach, end-to-end deep
attentive model (EDAM) to address the task of personalized item
retrieval for online content-sharing platforms.

2.1 Problem Statement
In this paper, we focus on personalized item retrieval using only
query and personal item history like watched videos and listened
musics. Suppose that V andC are the corpora of items and content
providers, where the content provider c of an item v is denoted
as C(v) ∈ C . Each query q is composed of a set of terms T (q) ={
t1, · · · , t |q |

}
, where ti is the i-th term of q; |q | is the number of

terms inq. The profile of a useru can be represented by the personal
item history as a set of accessed itemsHV (u) ⊂ V and the set of cor-
responding content providers HC (u) =

{
C(v) | v ∈ HV (u)

}
⊂ C .

For a user u and a query q, R(q,u) ⊂ V indicates the corresponding
set of items that are relevant to the query. Given a user u and a
query q, our goal is to rank all of the items inV so that the relevant
items R(q,u) can be ranked as high as possible. Note that the task is
extremely difficult because only personal item history is available
while none of meta-data and descriptive information is granted for
items and content providers.

2.2 Framework Overview
Figure 2 shows the illustration of the proposed framework person-
alized item retrieval with user history for online content-sharing
platforms. Items and content providers in the user history are first
mapped to item embeddings and provider embeddings while the
query embedding is derived by aggregating the embeddings of
query terms. With the query-aware attention mechanism, we com-
pute the importance of each provider and each item, thereby ob-
taining the ultimate representations of historical items and con-
tent providers. In addition, we propose to utilize external item key
memory for better estimation of item importance. Finally, after
aggregating the representations of query and user history, the per-
sonalized search results can be derived by a softmax function over
the candidate items. Moreover, the item key embeddings can be
improved by an auxiliary classification task with query embeddings
while the sequential knowledge in user history can be learned by
locality preservation for item and provider embeddings.

2.3 Query-aware Attention with External Key
Memory for User History Modeling

To utilize the knowledge in the user history, we propose query-
aware attention with external key memory to model user history.
More precisely, an embedding-based model derives continuous rep-
resentations in latent spaces for history items and content providers.
Query Embedding. For the given query, we derive a continuous
bag-of-terms representation as the query embedding by aggregating
term embeddings due to the production efficiency. Formally, the
query embedding q ∈ Rd of the query q can be computed as:

q =

∑
ti ∈T (q) ti

|q |
,

where ti ∈ RdT is the d-dimensional embedding of the term ti in
q. Note that the query embedding method can be simply replaced
with other approaches, but we focus on user history modeling in
this paper. In addition, bag-of-terms approach is robust for rare
queries in real-world production systems and utilized in various
previous studies [3].
UserHistoryModelingwithQuery-awareAttention.As shown
in previous studies [2, 3], user history can be useful for personal-
ization. However, many of the activities in user history can be
irrelevant to user search intents. In the item retrieval task, the
query plays one of the most essential roles and directly represents
search intents of the user. Hence, we utilize the query informa-
tion for user history modeling with query-aware attention. More
specifically, two continuous representations are derived to indicate
relevant items and content providers in the user history.

Take the historical item representation as an example. In this
paper, we estimate the importance of each item in the user history
with the scaled dot-product attention [39]. For each item in user
history v ∈ HV (u), the attention weight α(v,q) as the importance
with the query q can be computed as follows:

α (v, q) =
exp

(
qTv/

√
d
)

∑
v ′∈HV (u) exp

(
qTv′/

√
d
) ,

where q and v are d-dimensional query and item embeddings.
The historical item representation hV can then be represented
as the weighted sum of individual item embeddings as hV =∑
v ∈HV (u) α(v,q) · v . Similarly, the representation for historical

content providers hC can be derived as follows:

hC =
∑

c∈HC (u)

α (c, q) · c , and α (c, q) =
exp

(
qT c/

√
d
)

∑
c′∈HV (u) exp

(
qT c ′/

√
d
) ,

where c is the embedding for the content provider c .
External Key Embeddings for Item Attention. Generally, the
query-aware attention projects historical items and content providers
onto the latent query embedding space so that the embedding simi-
larity can be treated as the importance scores. However, the query
embedding space can be inappropriate to represent items and con-
tent providers. Moreover, the embedding spaces of different entities
can be different. Although some studies [2, 3] apply non-linear
transformations to cast embeddings into the same space for esti-
mating attention weights, it can be better to independently model
representations and estimate attention weights.
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Figure 2: Illustration of the proposed framework, end-to-end deep attentive model (EDAM), for personalized item retrieval.

In this work, we propose to use additional external key embed-
dings for estimating item attention weights. For each item v ∈ V ,
instead of utilizing the item embeddingv , we independently learn
an external key embedding kv in the query embedding space to
compute the attention weight as follows:

αk (v, q) =
exp

(
qT kv /

√
d
)

∑
v ′∈HV (u) exp

(
qT kv ′/

√
d
) .

Therefore, the historical item representation hV can be re-written
as hV =

∑
v ∈HV (u) αk (v,q) ·v . Note that we do not learn external

key embeddings for content providers because they do not lead to
improvements as discussed in Section 3.

Finally, to capture the knowledge of both query and user history
and model their interactions, the ultimate features h for deriving
search results can be computed with a fully-connected layer h =
ReLU(Whh0 +bh ), where h0 = [q;hV ;hC ] concatenates the query
embedding and the representations of items and content providers
in user history;Wh andbh represent the layer weights and biases for
dh hidden units; ReLU(·) is the rectified linear unit as the activation
function.

2.4 Classification as Ranking
To derive the ranking results, we follow the previous industrial
approach [8] to pose the ranking problem as a task of extreme multi-
class classification with the ultimate features h. More precisely,
given a query q and a user u, we aim to calculate a probabilistic
score P(v | q,u) for each candidate item v ∈ V as the estimated
relevance to the query.

Given the ultimate features h, we can derive the logits x ∈ R |V |

for multi-class classification with a fully-connected layer as x =
Wsh, whereWs represents the weights for obtaining logits. Finally,
the relevance scores P(v | q,u) can be computed with a softmax
function as:

P(v | q,u) =
exp(xv )∑
v ′ exp(xv ′)

,

where xv is the corresponding logit in x for the item v . The search
results can then be generated by ranking the relevance scores. Note
that we do not learn biases for computing the logits because the

search results can be approximated by nearest neighbor search for
the efficiency of serving real-world production systems. It is also
consistent with existing industrial approaches [8].

2.5 Auxiliary Ranker with Item Key Softmax
When item key embeddings are crucial for estimating the impor-
tance of each item in user history, they can only be jointly and
implicitly optimized with each other through complicated compu-
tations for item attention. To learn better item key embeddings, we
propose an additional auxiliary ranker for regularization.

Since item key embeddings share the same latent space with
query embeddings, item key embeddings can be also relatively
applied for estimating relevance. The auxiliary task aims to estimate
the relevance scores P(v | q, {ki }) with only the query q and the
item key embeddings of all items {ki }. Here we propose the item
key softmax to address the auxiliary task and sharpen item key
embeddings. Formally, the relevance score P(v | q, {ki }) to the
query q for the item v can be computed by replacing the weights
of a softmax with item key embeddings as:

P(v | q, {ki }) =
exp(qTkv )∑

v ′∈V exp(qTkv ′)
,

where q is the query embedding; kv is the item key embedding of
the item v . Finally, the item key embeddings can be more informa-
tive if they are also capable of directly indicating the relevance to
queries. Moreover, the auxiliary task can also be jointly addressed
with the major retrieval task introduced in Section 2.4 so that the
item key embeddings can be trained with both item attention and
item key softmax.

2.6 Locality Preservation
The sequential user behaviors can also indicate the relationships
between items and content providers. In otherwords, the contexts of
items in user history can also be beneficial to learn their embeddings.
In this work, we conduct locality preservation for local patterns
of items in user history with a continuous bag-of-words (CBOW)
model as an additional regularization task.
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Figure 3: Schema of the continuous bag-of-words (CBOW)
model for locality preservation with historical items.

Figure 3 shows an example of the CBOW model for items in
user history. Given L context items of a certain item vi , locality
preservation assumes that the embeddings of context items are
capable of inferring the itemvi . More formally, we aim to maximize
the following objective computed by a softmax function as:

P
(
vi | vi− L

2
,vi−1,vi+1,vi+ L

2

)
=

exp(sTvi
xi )∑

v ∈V exp(sTvxi )
,

where sj derives the logit for the item j; xi is the summation of the
embeddings of context items asxi =

∑
i− L

2 ≤j≤i+
L
2 , j,i

vj . Similarly,
the item key embeddings ki can be also regularized by locality
preservation based on the sequences of items in user history as
shown in Figure 2.

2.7 Multi-task Learning and Optimization
Multi-task learning is applied to simultaneously optimize the objec-
tives of different components in EDAM, including (1) classification
as ranking, (2) the auxiliary ranker, and (3) locality preservation.
Each component has a corresponding loss jointly optimized with
the losses of other components.

For classification as ranking and the auxiliary ranker, the tasks
solve extreme multi-class classification problems with shared train-
ing data. Hence, we utilize the cross-entropy [19] between the pre-
dicted distributions and the gold standard y as the loss functions.
Formally, the losses of two tasks can be computed as:

Lrank = −
∑
v∈V

yv log P (v | q, u), Laux = −
∑
v∈V

yv log P (v | q, {ki }),

where yv indicates if v is the label item in the gold standard y.
For locality preservation, it can be treated another extreme multi-

class classification task for each item or content provider in user
history. Hence, the locality preservation loss for different embed-
dings can be represented as:

Llocality_item =∑
vi ∈HV (u)

∑
vj ∈V

1[vi = vj ] log P
(
vj | v

i− L
2
, vi−1, vi+1, vi+ L

2

)
,

Llocality_item_key =∑
vi ∈HV (u)

∑
vj ∈V

1[vi = vj ] log P
(
vj | k

i− L
2
, ki−1, ki+1, ki+ L

2

)
,

where the overall loss for locality preservation can be defined as:

Llocality = Llocality_item + Llocality_item_key.

Finally, the objective of multi-task learning combines the loss
functions of different components as L = Lrank+Lauxiliary+Llocality.
Efficient Optimization. To efficiently train the model with mil-
lions of items and content providers in corpora, we rely on sampling
negative classes as candidates from the background distribution
to avoid exhausting computations [22]. More specifically, for each
training instance, the cross-entropy is minimized with the class
of the true label and several negative sampled classes. Practically,
sampling several thousands of negative classes can lead to more
than 100 times speedup over the conventional optimization in the
production systems as shown in previous studies [8].

For the task of locality preservation, it is also time-consuming
to enumerate all individual items and content providers in user
history. Hence, in each training epoch, we stochastically sample
an item and a content provider for optimizing the objectives. In
other words, we manually conduct stochastic gradient descent for
the part of learning locality preservation, thereby reaching several
hundred times speedup over enumerating all possible candidates.

3 EXPERIMENTS
In this section, we conduct extensive experiments and in-depth
analysis to verify the performance of our proposed approach.

3.1 Experimental Settings
Experimental Dataset. The experiments of this paper are con-
ducted based on user logs of a large video media platform at Google
with videos as items and channels as content providers.The dataset
consists of 400 most recent accessed items of 184M users, where
some of the items are accessed after issuing queries. To allevi-
ate the impact of rare items, items are replaced with an out-of-
vocabulary (OOV) item if the items are not among the top 1M items.
Similarly, content providers are taken over by an OOV provider if
they are not in the list of the top 400K providers.
Label Items and History Selection. The items associated with
queries are treated as the label items that are relevant to the corre-
sponding queries. Note that OOV items will not be selected as labels
to prevent both training and evaluation from the noises caused by
the ambiguity. To avoid the temporal leakage in the logs, we follow
previous work [8] to derive the contexts as personal item history.
Figure 4 shows the illustration of label items and an example of
selecting personal item history for a given query. For instance,vi is
not a label item without a corresponding query. In contrast, vj is a
label item because it is accessed after the query qj . Given the label
item vj with a query qj , the selected item history is considered as{
v1,v2, · · · ,vj

}
.

Training and Evaluation. For evaluation, we randomly sample
10% of users and their logs as testing data while the data of the
remaining 90% of users are considered as the training dataset. To
reduce the bias of diligent users with more label items, we only
adopt the last label item of each user in the testing dataset for eval-
uation. On the contrary, in each epoch, we independently sample a
label item for each training user so that popular users would not be
over-trained with more label items. Moreover, different label items
of a user can be examined over training epochs.
Competitive Baselines. Although none of the existing works fo-
cuses on personalized item retrieval for online content-sharing
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search history

v1 v2 vi vj vj+1

q2 qj
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selected item history

Figure 4: Illustration of label items and the selection of per-
sonal item history for a given query.

platforms without descriptive information, methods for other re-
trieval tasks can be modified by replacing the encoders of descrip-
tive information with embeddings as a workaround. In our experi-
ments, query embedding model (QEM) [3], hierarchical embedding
model (HEM) [3], zero-attention model (ZAM) [2], attentive convo-
lutional neural networks (ACNN) and recurrent neural networks
(ARNN) [16] are considered as the comparative baseline methods.
EvaluationMetrics. For evaluation, we adopt success rate at top-k
(SR@k) [28] to evaluate the performance of models. More precisely,
SR@k denotes the percentage of the label items that can be found
in the top-k ranked items.
Implementation Details. The model is implemented by Tensor-
flow [1] and optimized by Adam [24] with an initial learning rate of
1e-5. The embedding dimension d and the number of hidden units
dh are set as 128 and 256 after fine-tuning. For all of the baselines,
we also fine-tune all hyper-parameters for fair comparisons and
evaluation.

3.2 Experimental Results
Overall Evaluation. Figure 5 shows the performance of different
methods. For the baselines, QEM performs the worst because it
only considers query information while HEM achieves better per-
formance by exploiting user history. AEM and ZAM are the best
baselines with the attention that appropriately identifies important
items and providers in history. ACNN and ARNN perform worse
because they over-emphasize the sequential information, which is
not as essential as the relations between history and the query for
personalized search. Our proposed EDAM significantly outperforms
all baselines. This is because the external item key embeddings can
more appropriately model the query-history relations while locality
preservation properly learns sequential knowledge.
Length of User History. We then analyze the performance with
different lengths of user history. Figure 6 demonstrates the SR@1
scores of methods over different numbers of items in user history.
For all methods using user history, the improvements against QEM
are greater with more items in user history. When the number
of historical items is limited, all baselines exploiting user history
perform worse than QEM. In contrast, our proposed EDAM con-
sistently outperforms all baselines over different history lengths.
It shows that EDAM is capable of deriving essential information
from user history across different situations of user history.
Ablation Study. Here we conduct an ablation study to demon-
strate the effectiveness of different components in EDAM. Table 2
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Figure 5: Success rates of methods at different positions.

Table 2: The SR@1 scores of EDAM with and without the
auxiliary ranker (AR) and locality preservation (LP).

Method Length of User History
Overall [0, 50] [51, 100] [101, 200] [201, 400]

EDAM 0.4097 0.3297 0.3718 0.3822 0.4196
-AR 0.3973 0.3031 0.3522 0.3696 0.4089
-LP 0.4039 0.3143 0.3591 0.3729 0.4155

Number of Historical Items
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Figure 6: SR@1 scores of methods with different lengths of
user history.

depicts the SR@1 scores of EDAM with and without the auxiliary
ranker (AR) and locality preservation (LP). The results show that
both AR and LP are consistently beneficial across different history
lengths while AR plays a more important role for EDAM. Espe-
cially, AR leads to greater improvements for shorter user history. It
further demonstrates that the ability of EDAM to model personal
information with only limited data as shown in Figure 6.
Content Provider Key Embeddings. In addition to historical
items, we also attempt to apply external key memory into modeling
content providers for personalization. Table 3 shows the SR@1
scores of ZEM and EDAM using two different key embeddings.
Although item key embeddings lead to significant improvements,
external key memory does not work for modeling content providers.
This can be because label items of a content provider can be relevant
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Table 3: The SR@1 scores of ZEM and EDAM using item key
embeddings or content provider key embeddings.

Method Length of User History
Overall [0, 50] [51, 100] [101, 200] [201, 400]

ZEM 0.3957 0.3155 0.3570 0.3709 0.4056
EDAM (Item) 0.4097 0.3297 0.3718 0.3822 0.4196

EDAM (Provider) 0.3808 0.3106 0.3513 0.3608 0.3892

to different queries so that the learned embeddings are noisy. Hence,
EDAM only adopts the item key embeddings. In order to model
the relations between the query and user history, the query-aware
attention mechanism with external key memory is proposed to
derive the representations of historical and content providers. The
sequential knowledge can also be learned by preserving the item
locality in history.

4 CONCLUSIONS
In this paper, we propose EDAM to address the problems of person-
alized item retrieval for online content-sharing platforms without
any descriptive information based on the query-aware attention
mechanism with external key memory and locality preservation.
Experimental results and analysis on the large-scale dataset from a
real-world commercial online content-sharing platform also demon-
strate the effectiveness and the robustness of EDAM. The insights
can be concluded as follows: (1) user history is helpful for person-
alized item retrieval; (2) learning external key item embeddings
for estimating attention weights is beneficial, especially for the
users with shorter item history; (3) sequential information in user
history is sensitive for item retrieval so that EDAM with locality
preservation outperforms baselines of sequence models such as
ARNN.
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