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ABSTRACT
Top-𝐾 recommender systems aim to generate few but satisfactory

personalized recommendations for various practical applications,

such as item recommendation for e-commerce and link prediction

for social networks. However, the numbers of users and items can

be enormous, thereby leading tomyriad potential recommendations

as well as the bottleneck in evaluating and ranking all possibilities.

Existing Maximum Inner Product Search (MIPS) based methods

treat the item ranking problem for each user independently and

the relationship between users has not been explored. In this paper,

we propose a novel model for clustering and navigating for top-𝐾

recommenders (CANTOR) to expedite the computation of top-𝐾

recommendations based on latent factor models. A clustering-based

framework is first presented to leverage user relationships to parti-

tion users into affinity groups, each of which contains users with

similar preferences. CANTOR then derives a coreset of representa-

tive vectors for each affinity group by constructing a set cover with

a theoretically guaranteed difference to user latent vectors. Using

these representative vectors in the coreset, approximate nearest

neighbor search is then applied to obtain a small set of candidate

items for each affinity group to be used when computing recom-

mendations for each user in the affinity group. This approach can

significantly reduce the computation without compromising the

quality of the recommendations. Extensive experiments are con-

ducted on six publicly available large-scale real-world datasets for

item recommendation and personalized link prediction. The exper-

imental results demonstrate that CANTOR significantly speeds up

matrix factorization models with high precision. For instance, CAN-

TOR can achieve 355.1x speedup for inferring recommendations

in a million-user network with 99.5% precision@1 to the original

system while the state-of-the-art method can only obtain 93.7x
speedup with 99.0% precision@1.
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1 INTRODUCTION
Building large-scale personalized recommender systems has al-

ready become a core problem in many online applications since

the explosive growth of internet users in the recent decade. For ex-

ample, user-item recommender systems achieve many successes in

e-commerce markets [23] while link prediction in social networks

can be treated as a variant of recommender systems [2, 33]. To es-

tablish recommender systems, latent factor models for collaborative

filtering have become popular because of their effectiveness and

simplicity. More precisely, each user or item can be represented as a

low-dimensional vector in a latent space so that the inner products

between user and item vectors are capable of indicating the user-

item preferences. Furthermore, these latent vectors can then be

learned by optimizing a loss function with sufficient training data.

For instance, matrix factorization [19] has been empirically shown

to outperform conventional nearest-neighbor based approaches in

a wide range of application domains [11].

After obtaining user and item latent vectors, to make item recom-

mendations for each user, recommender systems need to calculate

the inner products for all user-item pairs. Although learning user

and item latent vectors is efficient and scalable for most existing

models, recommender systems can take an enormous amount of

time in evaluating all user-item pairs. More specifically, the time

complexity of learning latent vectors is only proportional to the

number of user-item pairs in the training data which is a small

subset of all possible user-item pairs, but finding the top recommen-

dations entails examining all 𝑂 (𝑚𝑛) inner products between all𝑚

users and 𝑛 items. As a result, the quadratic complexity becomes a

hurdle for large-scale recommender systems. For example, it can

take more than a day to compute and rank all preference scores, and

consequently the systems cannot be updated on a daily basis [12].

In order to make large-scale recommender systems practical, it

is critical to accelerate the process of computing and ranking the

inner products of user and item latent vectors, in order to efficiently

obtain the top-𝐾 recommendations for all users.

To accelerate the computation of inner products, the maximum

inner product search (MIPS) [27, 31, 34] is one of the feasible ap-

proaches. Locality sensitive hashing (LSH) [16] and PCA tree [32]

may be applied to solve MIPS after reducing the problem to nearest-

neighbor search. To reduce the computation for making recommen-

dations for a given user, one may find a small group of candidate

items whose latent vectors have large inner products with the user’s

latent vector using clustering algorithms [7], or sort entries of each

dimension in the latent vectors separately by some greedy algo-

rithms [12, 34]. In essence, most of the existing MIPS algorithms

https://doi.org/10.1145/3366423.3380283
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adopt a two-stage strategy, decomposing the computation into a

preparation process and a prediction process. In the preparation

stage, these methods will construct suitable data structures [34] or

reduce the number of ranking candidates [7], and these prepared

data structures are used to conduct efficient maximum inner prod-

uct search for query vectors in the inference stage. However, most of

these existing MIPS algorithms have the following two weaknesses,

making them often impractical for real applications: (1) they only

focus on optimizing the inference speed for a given user at the cost

of considerable preparation time, but for recommender systems,

the overall execution time (including both preparation and infer-

ence time) matters more because the system needs to be re-trained

frequently as new data arrive. (2) All the MIPS approaches aim to

quickly identify the top item set for any query vector. However, in

recommender systems queries are not arbitrary vectors. They are

user latent factors and usually have very strong clustering structure,
which is ignored in most of the MIPS algorithms.

In order to speed up the overall execution time, our main idea

is to exploit the relationships between users. More precisely, users

with similar latent factors are more likely to share similar item

preferences which may be reflected by their high inner products.

However, existing methods for accelerating recommender systems

do not consider user relationships and the distribution of user la-

tent vectors. For instance, existing greedy strategies [12, 34] only

consider the values of item latent vectors. Some studies based on

proximity graphs [26, 35] and clustering algorithms [7] also solely

reduce the search space of items. In the inference stage, these ap-

proaches treat the recommendation to each user as an independent

query to the data structures and algorithms. As a consequence, it

can be extremely time-consuming, especially with myriad users

and enormous spaces of candidate items.

In this paper, we propose a novel model for clustering and

navigating for top-𝐾 recommenders (CANTOR) that leverages the

knowledge of user relationships to accelerate the process of gen-

erating recommendations for all users with a given latent factor

model. CANTOR consists of two stages: preparation and prediction.

In the preparation stage, we aim to cluster users sharing similar

interests into affinity groups and compute a small set of preferred

items for each affinity group. More specifically, the user vectors

(generated from a given latent factor model) are used in clustering

affinity groups. To further accelerate the preparation time, a user

coreset of few representative vectors are derived for each affinity

group, and are used to obtain a small set of preferred items for users

in this group by an efficient approximate nearest neighbor search

algorithm. Finally, in the prediction stage, the top-𝐾 recommenda-

tions for each user can be retrieved by ranking these preferred items

of the corresponding affinity group, which can be done much more

efficiently than evaluating and ranking all items. We summarize

our contributions as follows:

• To the best of our knowledge, this paper is the first work to focus

on the preparation time and user relationships for accelerating

the prediction process of large-scale top-𝐾 recommender systems.

Enhancing preparation time is essential for recommender sys-

tems to accommodate massive incoming data in a timely manner,

which has not been studied previously.

• Clustering users into affinity groups based on the distribution

of user latent vectors provides significant speedup of the predic-

tion process, compared to conventional approaches that inde-

pendently deal with each user. The representative vectors of the

affinity groups offer a theoretically guaranteed precision for users

with similar preferences. Approximate nearest neighbor search is

applied to efficiently retrieve the satisfactory recommendations

for each user from a small set of candidate items.

• Experiments conducted on six publicly available datasets demon-

strate that CANTOR can significantly accelerate large-scale top-

𝐾 recommender systems for both item recommendation and

personalized link prediction. An in-depth analysis then indicates

the robustness and effectiveness of the proposed framework.

2 PROBLEM STATEMENT
In this section, we first introduce the notations and then formally

define the objective of this paper. Suppose that we have an incom-

plete𝑚 × 𝑛 one-class matrix 𝑹 = {𝑅𝑖 𝑗 } ∈ {0, 1}𝑚×𝑛
, where𝑚 and

𝑛 are the numbers of users and items in the system. 𝑅𝑖 𝑗 = 1 if user 𝑖

prefers item 𝑗 in the training data; otherwise, 𝑅𝑖 𝑗 = 0. Based on 𝑹, a
matrix factorization based algorithm learns 𝑑-dimensional user and

item latent vectors, denoted by 𝑷 ∈ R𝑚×𝑑
and 𝑸 ∈ R𝑛×𝑑 respec-

tively, where
ˆ𝑹 = 𝑷𝑸𝑇 ∈ R𝑚×𝑛

reflects the underlying preferences.

To compute top-𝐾 recommendations for each user, we need to find

items with the 𝐾 highest scores among �̂� (𝑖) = {𝑅𝑖 𝑗 ′ | 𝑗 ′ ∈ 1 . . .𝑚}.
Note that𝑚 = 𝑛 for personalized link prediction in social networks,

where the goal is to suggest other users as recommended items.

Although matrix factorization models can be learned expedi-

tiously when 𝑹 is sparse, inferring the top-𝐾 recommendations

requires computing and sorting the scores 𝑅𝑖 𝑗 of all items 𝑗 for each

user 𝑖 . As a result, the inference process can be time-consuming

with an 𝑂 (𝑛𝑚𝑑) time complexity which becomes intractable when

𝑛 and𝑚 are large. To address this problem, the goal of this paper

is to speed up the inference time of top-𝐾 recommenders with a

high precision. More specifically, given the trained matrices 𝑷 and

𝑸 , we aim to propose an efficient approach that approximates the

top-𝐾 recommended items for each user.

3 CONSTRUCTING USER CORESETS FOR
TOP-K RECOMMENDER SYSTEMS

In this section, we present CANTOR for accelerating top-𝐾 recom-

mender systems, starting with several key preliminary ideas.

3.1 Preliminary
In order to leverage the relationship between users, we first for-

mally define the affinity groups of users in recommender systems

as follows:

Definition 1. (Affinity Group) An affinity group 𝑨𝑡 is a set of

users sharing similar interests in items. Even though any similarity

metrics may be used, in this paper, we adopt cosine similarity as

the metric to define the affinity groups.

By this definition, the sets of satisfactory recommendations should

be similar for users in the same affinity group. This suggests that the

top recommendations for all users in an affinity group are confined

to a small subset of the items and such item subset can be learned by
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Table 1: Summary of notations and their descriptions.

Notation Descriptions

𝑚,𝑛 numbers of users and items

𝑑 number of dimensions for latent vectors

𝐾 number of top recommendations

𝑹 ∈ R𝑚×𝑛
one-class preference matrix

𝑷 ∈ R𝑚×𝑑
user latent vectors for all users

𝑸 ∈ R𝑛×𝑑 item latent vectors for all items

ˆ𝑷 ∈ R𝑢×𝑑 sampled user latent vectors

𝑢 number of sub-sampled users

𝑟 number of affinity groups for𝑚 users

𝑨 set of 𝑟 affinity groups, where 𝑨 = {𝑨𝑡 | 𝑡 = 1 . . . 𝑟 }
𝒗𝑡 centroid vectors for the affinity group 𝑨𝑡
𝑧 (𝑝) affinity group indicator for the user vector 𝑝

𝑷𝑡 latent vectors of users in the affinity group 𝑨𝑡
𝐶 (𝑝𝑖 , 𝐾) indexes of top-𝐾 items with full 𝑝𝑇

𝑖
𝑸 evaluation.

𝒔𝑡 the user coreset for the affinity group 𝑨𝑡
N𝒔𝑡 (𝑝𝑖 ) the nearest coreset representative in 𝒔𝑡 for 𝑝𝑖

𝒄𝑡 reduced item set of top-𝐾 items for the affinity group 𝑨𝑡
𝜖 similarity threshold in adaptive representative selection

𝑤 number of new representatives for outliers

𝐺 proximity graph of the item vectors

efs the size of dynamic lists of nearest neighbors

examining only a few carefully selected users in the group, leading

to the following definition of the preferred item set.

Definition 2. (Preferred Item Set) A preferred item set 𝒄 for an

affinity group is a set of (potentially) satisfactory items for the

users in the group, and the size of the preferred item set is usually

much smaller than the total number of items, i.e., |𝒄 | ≪ 𝑛.

Therefore, we only need to examine the preferred item set to gener-

ate top recommendations, leading to significant time saving overs

the alternative of examining all items.

In order to robustly generate the preferred item set for each

affinity group, we generate a few representatives from the group

to compute the preferred item set. This is statistically more robust

than using only the "centroid" user in the latent space, and is more

computationally efficient than using all users in the group.

Definition 3. (User Coreset of an Affinity Group) A 𝛿-user coreset
𝒔𝑡 of an affinity group 𝑨𝑡 is a (small) set of latent representative

vectors to preserve the item preference of the users in 𝑨𝑡 such that

∀𝑞 ∈ 𝑸, 𝑖 ∈ 𝑨𝑡 : ���𝑝𝑖𝑞𝑇 − N𝒔𝑡 (𝑝𝑖 ) 𝑞𝑇
��� ≤ 𝛿,

where N𝒔𝑡 (𝑝𝑖 ) ∈ 𝒔𝑡 is the nearest coreset representative for 𝑝𝑖 ;

𝛿 > 0 is a small enough constant.

The user interests in the affinity group can be well captured by the

representative vectors in the user coreset. Note that the representa-

tive vectors do not have to be identical to actual user latent vectors

in the group.
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Figure 1: The general framework of the proposed clustering
and navigating for top-𝐾 recommenders (CANTOR).

3.2 Framework Overview
Figure 1 shows the general framework of CANTOR. The framework

consists of two stages: preparation and prediction. In the prepara-

tion stage as shown in Algorithm 1, the 𝑚 user latent vectors 𝑷
are first sub-sampled as

ˆ𝑷 and clustered into 𝑟 affinity groups 𝑨𝑡
with a centroid vector 𝒗𝑡 computed from the corresponding user

vectors 𝑷𝑡 , where 𝑡 = 1 . . . 𝑟 . For each affinity group 𝑨𝑡 , we aim at

deriving a small user coreset 𝒔𝑡 . To do so, we propose an adaptive

representative selection method (Algorithm 2) to greedily construct

a set cover of user latent vectors for each affinity group after math-

ematically proving that the set covers can be the coresets of affinity

groups. Finally, a small preferred item set 𝒄𝑡 can be obtained by

approximate nearest neighbor search using its coreset 𝒔𝑡 for each
affinity group. In the prediction stage (Algorithm 4), CANTOR first

locates the corresponding affinity group 𝑨𝑡 for each user and then

ranks the small number of items in the preferred item set 𝒄𝑡 , thereby
efficiently providing satisfactory recommendations. In sum, Table 1

further summarizes all major notations in this paper.

3.3 Preparation Stage
To overcome the hurdle of extremely long preparation time experi-

enced by conventional methods, we propose to exploit similarities

between user vectors in the latent space for acceleration as shown

in Algorithm 1.

Affinity Group Modeling by User Clustering. Most of the con-

ventional algorithms only rely on similarities of item latent vec-

tors [30] and proximity graphs [14, 35] to accelerate the recom-

mendation, and have not used the relationships between users and



WWW ’20, April 20–24, 2020, Taipei, Taiwan Jyun-Yu Jiang∗ , Patrick H. Chen∗ , Cho-Jui Hsieh and Wei Wang

Algorithm 1: Preparation Process for CANTOR

Input: User latent vectors 𝑷 ; item latent vectors 𝑸 ; degree
of each user 𝑑𝑒𝑔𝑚

𝑖=1
; the number of desired

recommendation 𝐾

Output: Centroid vectors 𝒗𝑡 and preferred item sets 𝒄𝑡 for
each affinity cluster 𝑨𝑡 for 𝑡 = 1 . . . 𝑟 .

1 Hyperparameter: Number of affinity groups 𝑟 ; small

world graph search size efs.; number of sub-sampled users 𝑢;

2 𝑃 = Multinomial_Sampling(𝑷 , 𝑑𝑒𝑔𝑚
𝑖=1

, 𝑢); 𝑃 ∈ R𝑢×𝑑 ;

3 𝒗1, · · · , 𝒗𝑟 = 0; 𝐼 = 0, 𝐼 ∈ R𝑢×1 ;
4 repeat
5 for 𝑖 = 1, · · · , 𝑟 do
6 𝒗𝑖 =

∑
𝑗 ∈{ 𝑗 |𝐼 [ 𝑗 ]=𝑖 } ˆ𝑷 [ 𝑗] ;

7 𝒗𝑖 = 𝒗𝑖 / ∥𝒗𝑖 ∥2 ;
8 I = argmax𝑡 𝒗

𝑇
𝑡
ˆ𝑷 ;

9 until Convergence;
10 G = CreateProximityGraph(𝑸 , efs);
11 𝒄1, . . . , 𝒄𝑟 = ∅, . . . , ∅ ;

12 I = argmax𝑡 𝒗
𝑇
𝑡
ˆ𝑷 ;

13 for 𝑖 = 1, · · · , 𝑟 do
14 ˆ𝑷𝑖 =

{
𝑝 𝑗 | 𝑝 𝑗 ∈ ˆ𝑷 , 𝐼 [ 𝑗] = 𝑖

}
;

15 𝒔𝑖 = AdaptiveClustering(
ˆ𝑷𝑖 , 𝜖 ,𝑤 ) ;

16 for 𝑞 ∈ 𝒔𝑖 do
17 𝐼𝑖 = QueryProximityGraph(G, 𝒔, 𝐾 ) ;

18 𝒄𝑖 = 𝒄𝑡 ∪ 𝐼𝑖 ;

19 return 𝒄𝑡 ,𝒗𝑡 for all 𝑡 = 1, · · · , 𝑟 .

the distributions of user latent vectors in this endeavor. To exploit

the knowledge of user relationships, we propose a clustering based

framework to model user affinity groups.

Let 𝑟 be the number of affinity groups for all𝑚 users, where 𝑟

is a hyperparameter in CANTOR. We partition all𝑚 users into 𝑟

disjoint clusters as the affinity groups 𝑨 = {𝑨𝑡 | 𝑡 = 1 . . . 𝑟 } based
on the user latent vectors 𝑷 = {𝑝𝑖 | 𝑖 = 1 . . .𝑚}. In addition, each

affinity group 𝑨𝑡 has a centroid vector 𝒗𝑡 ∈ R𝑑 in the latent space.

Each user 𝑖 with the latent vector 𝑝𝑖 belongs to 𝑨𝑧 (𝑝𝑖 ) , where 𝑧 (𝑝𝑖 )
is the affinity group indicator represented as:

𝑧 (𝑝𝑖 ) = argmax

𝑟
𝒗𝑇𝑟 𝑝𝑖 . (1)

Let𝐶 (𝑝𝑖 , 𝐾) be the top-𝐾 preferred items for user 𝑖 which is defined

as:

{ 𝑗 | 𝑝𝑇𝑖 𝑞 𝑗 ≥ 𝑝𝑇𝑖 𝑞 𝑗 ′,∀𝑗
′ ∉ 𝐶 (𝑝𝑖 , 𝐾) and |𝐶 (𝑝𝑖 , 𝐾) | = 𝐾},

where 𝑞 𝑗 ∈ 𝑸 is the latent vector of item 𝑗 . Intuitively, if users 𝑖

and 𝑘 are in the same affinity group, their preferred sets 𝐶 (𝑝𝑖 , 𝐾)
and 𝐶 (𝑝𝑘 , 𝐾) may have substantial overlap because of their similar

interests. This motivates us to compute a preferred item set 𝒄𝑡 for
users in the same affinity group 𝑨𝑡 so that each 𝒄𝑡 contains only a

small subset of all 𝑛 items, i.e., |𝒄𝑡 | ≪ 𝑛. Instead of computing the

inner products between 𝑝𝑘 and all item latent factors 𝑞 ∈ 𝑸 , we
can narrow down the candidate set to be 𝒄𝑡 , and only evaluate the

items in 𝒄𝑡 to find the top-𝐾 predictions for user 𝑘 .
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Figure 2: The distributions of users and items over different
degrees in the Amazon dataset.

Since our task is to accelerate the maximum inner product search,

the centriod vector 𝒗𝑡 for each affinity group𝑨𝑡 can then be updated
by the maximum cosine similarity criteria as:

𝒗𝑡 =

∑ |𝑷𝑡 |
𝑖=1

𝑷𝑡𝑖

∥∑ |𝑷𝑡 |
𝑖=1

𝑷𝑡𝑖 ∥2
, (2)

where 𝑷𝑡 = {𝑝𝑖 | 𝑧 (𝑝𝑖 ) = 𝑡} contains the latent vectors of users that
belong to the affinity group 𝑨𝑡 . Therefore, each affinity group 𝑨𝑡
can obtain a centroid vector 𝒗𝑡 by iteratively running Equations (1)

and (2). However, iteratively performing Equations (1) and (2) can

still cost a long computational time when the number of users𝑚

is large. To address this issue, we propose to sub-sample a portion

of the 𝑚 user latent vectors to learn the centroid vectors. More-

over, we sample the latent vectors based on the degree distribution

in the one-class matrix 𝑹. For example, Figure 2a shows that de-

gree distribution of users usually follows a power-law distribution.

Hence, instead of using a uniform sampling, we sample user 𝑖 with

a probability proportional to a log function of its degree as:

𝑃 (𝑋 = 𝑖) ∝ log

𝑛∑
𝑗=1

𝑅𝑖 𝑗 , (3)

where𝑋 denotes the random variable of the target sampling process.

We will later show in Theorem 2 that error of approximation based

on sub-sampling will be asymptotically bounded.

After learning the centroids 𝒗1, · · · , 𝒗𝑟 ∈ R𝑑 and the correspond-

ing user latent vectors 𝑷1, · · · , 𝑷𝑟 for 𝑟 affinity groups 𝑨1, · · · ,𝑨𝑟 ,
the preferred item set 𝒄𝑡 for each group 𝑨𝑡 can be constructed so

that user vectors 𝑷𝑡 only need to search over this set of preferred

items for top recommendations. However, the naïve approach to

generate 𝒄𝑡 would require 𝑂 (𝑛𝑑) operations to examine all 𝑛 items

in order to derive the top candidates for each user in 𝑨𝑡 . Each
affinity group 𝑨𝑡 would need𝑂 ( |𝑷𝑡 |𝑛𝑑) operations for considering
all |𝑷𝑡 | users in the group to construct the preferred item set 𝒄𝑡 .

Coreset Construction as Finding a Set Cover. To accelerate the
process of constructing the preferred item set 𝒄𝑡 for an affinity group

𝐴𝑡 , we want to find a 𝛿-user coreset of𝐴𝑡 , and use it only instead of

whole 𝑨𝑡 to construct 𝒄𝑡 . We achieve this by first defining the idea

of 𝜖-set cover, and then show that each 𝜖-set cover corresponds to

a 𝛿-coreset.
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Definition 4. (𝜖-Set Cover) 𝒔𝑡 is an 𝜖-cover of 𝑷𝑡 if ∃N𝒔𝑡 (𝑝) ∈ 𝒔𝑡
so that N𝒔𝑡 (𝑝)𝑝𝑇 ≥ 𝜖 for all 𝑝 ∈ 𝑷𝑡 , where 𝜖 is a real number, and

N𝒔𝑡 (𝑝𝑖 ) ∈ 𝒔𝑡 denotes the nearest vector in 𝒔𝑡 of 𝑝𝑖 .

Theorem 1. Given an 𝜖-cover 𝒔𝑡 of 𝑨𝑡 , there exists a 𝛿 such that

𝜖-cover 𝒔𝑡 is a 𝛿-user coreset of the affinity group 𝑨𝑡 .

The proof is shown in Appendix A. Therefore, we could construct

a user coreset with an arbitrarily small 𝛿 by finding a cover with a

greater 𝜖 .

Another nice property is that we could find an 𝜖-set cover on

sampled subset of 𝑷 and generalize asymptotically with bounded

error. Denote 𝑷𝑨𝑡
to be same sampling process of 𝑷 generating user

vectors 𝑝𝑖 belonging to 𝑨𝑡 . We will have following result:

Theorem 2. For an affinity group 𝑨𝑡 , given any query 𝑞, an 𝜖-

cover of 𝑘 samples {𝑝𝑖 } drawn from 𝑷𝑨𝑡
would satisfy following

inequality with probability at least 1 − 𝛾 :

min

𝑖

(���N𝒔𝑡 (𝑝𝑖 ) 𝑞𝑇 − 𝑝𝑡𝑞𝑇
���) ≤ 𝛿 +√

2 log (1/𝛾)
𝑘

.

Note that we demonstrate the proof in Appendix B.

Theorem 2 indicates that we could construct an 𝜖-cover of sub-

sampled vectors to have an asymptotically guaranteed difference of

inner-product values to true distributions within the same affinity

group. Consequently, our task becomes finding an 𝜖-cover of all

𝑨𝑡 s and constructing the preferred item set 𝒄𝑡 of it. Hence, we pro-
pose a fast adaptive representative selection method to efficiently

construct an 𝜖-cover with sub-sampled user latent vectors for each

affinity group as summarized in Algorithm 2. For each affinity

group 𝑨𝑡 , the adaptive representative selection method is applied

to obtain a few representative 𝜖-cover 𝒔𝑡 . If there exists at least one
user whose latent vector has cosine similarity lower than 𝜖 to all

representative vectors, the algorithm iteratively generates more

representatives until every user has high cosine similarity to at

least one representative vector. As a result, the number of 𝜖-cover

|𝒔𝑡 | must be less than or equal to the number of user vectors in

the cluster |𝑷𝑡 |, and in practice, |𝒔𝑡 | ≪ |𝑷𝑡 | in most cases. Note

that the adaptive representative selection method is applied on

each affinity group 𝑨𝑡 independently. Next, the 𝜖-cover 𝒔𝑡 will be
utilized to construct the preferred item set to reduce complexity

from 𝑂 ( |𝑷𝑡 |𝑛𝑑) to 𝑂 ( |𝒔𝑡 |𝑛𝑑).

ProximityGraphNavigation for Preferred ItemSetConstruc-
tion. To avoid examining all 𝑛 items (𝑂 (𝑛𝑑) complexity) in pre-

ferred item set construction, we apply an approximate nearest

neighbor search (ANNS) method to accelerate the computation. We

adopt a model based on proximity graphs [26, 35] which has shown

the state-of-the-art performance in ANNS. Specifically, a proximity

graph is generated in which item vectors are nodes and nodes of

similar item vectors are connected by edges. Since the item degree

in recommender systems tends to follow a power-law distribution

as illustrated in Figure 2b, this proximity graph has the small world

properties [5] with sparse edges that offer high reachability be-

tween nodes. Hence, we apply the model of hierarchical navigable

small world graphs [25, 26] to obtain the preferred item set 𝒄𝑡 for
each affinity group 𝑨𝑡 .

Algorithm 2: Adaptive Representative Selection
Input: User latent vectors for an affinity group 𝑷 , the

number of iterations 𝑇 , the threshold 𝜖 , the number

of new representatives𝑤 ;

Output: Representative vectors 𝒔.
1 Initialize 𝒔 = ∅ ;

2 I = argmax𝑡 𝒔
𝑇 𝑷 ;

3 repeat
4 for 𝑖 = 1 . . . |𝒔 | do
5 𝒔𝑖 =

∑
𝑗 ∈{ 𝑗 |𝐼 [ 𝑗 ]=𝑖 } 𝑷 [ 𝑗] ;

6 𝒔𝑖 = 𝒔𝑖 / ∥𝒔𝑖 ∥2 ;
7 I = argmax𝑡 𝒔

𝑇 𝑷 ;

8 Outliers = { 𝑗 |𝒔𝑇
𝐼 [ 𝑗 ]𝑷 𝑗 < 𝜖} ;

9 for 𝑗 ∈ Outliers do
10 Draw 𝑖 from 1 . . .𝑤 ;

11 I[ 𝑗] = |𝒔 | + i ;

12 if Outliers ≠ ∅ then
13 Append𝑤 vectors to 𝒔 ;

14 until Outliers = ∅;
15 Outliers = { 𝑗 |𝒔𝑇

𝐼 [ 𝑗 ]𝑷 𝑗 < 𝜖} ;
16 Append 𝑷

Outliers
to 𝒔 ;

17 return 𝒔.

To construct the proximity graph of item vectors 𝑸 as a hierar-

chical small world graph 𝐺 , we iteratively insert the item vectors

into the graph, where each node 𝑞 has a list 𝑬 (𝑞) of at most efs
approximate nearest neighbors that could be dynamically updated

when inserting other item vectors, where efs is a hyperparameter.

In addition, the edges in the graph are organized as a hierarchy so

that edges connecting items that have a high inner product value of

their corresponding item vectors are at the bottom layers and edges

connecting items whose vectors have low inner product values are

at the top layers, thereby shrinking the search spaces for nearest

neighbors. Let 𝐿(𝑒) denote the corresponding layer of edge 𝑒 . Given
two edges 𝑒𝑖 and 𝑒 𝑗 , if 𝐿(𝑒𝑖 ) > 𝐿(𝑒 𝑗 ), then the nodes connected by

edge 𝑒𝑖 has a smaller inner product score than that of edge 𝑒 𝑗 . For

simplicity, let 𝑬 (𝑞, 𝑙) denote the list of nodes connected to node 𝑞 by
edges in the 𝑙-th layer. Finally, the hierarchical small world graph𝐺

of item vectors 𝑸 can be constructed in𝑂 (𝑑𝑛 log𝑛) [26, 35], where
𝑛 is the total number of items; efs is treated a constant hyperpa-

rameter. Note that efs controls the trade-off between efficiency and

accuracy for searching nearest neighbors because it decides the size

of search space and the potential coverage of real nearest neighbors.

The hierarchical small world graph 𝐺 provides the capability

of efficiently querying 𝐾 nearest neighbors of a vector 𝑞 with a

hierarchical greedy search algorithm. More specifically, we can

greedily traverse the graph 𝐺 by navigating the query vector from

the bottom layer to the top layer to derive 𝐾 approximate nearest

neighbors to 𝑞 as shown in Algorithm 3 with a 𝑂 (𝑑 log𝑛) time

complexity for each query. For each affinity group 𝑨𝑡 , we perform
a small world graph query to approximate 𝐶 (𝒔𝑡,𝑖 , 𝐾) for each rep-

resentative vector 𝒔𝑡,𝑖 ∈ 𝒔𝑡 . The preferred item set 𝒄𝑡 can then be

constructed by taking the union operation to individual top-𝑘 sets
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Algorithm 3: QueryProximityGraph

Input: Hierarchical small world graph 𝐺 ; the query vector

𝑞; the number of the output approximate nearest

neighbors 𝐾

Output: 𝐾 nearest vectors in 𝐺

1 𝑝 = Randomly select an entry node in 𝐺 ;

2 for 𝑙 = 1 to 𝐿 do
3 𝑝 = argmax𝒓 ∈{𝑝′ |𝑝′𝑬 (𝑝,𝑙) } 𝑞

𝑇 𝒓 ;

4 return 𝐾 Nearest Nodes in 𝑬 (𝑝, 𝐿) to 𝑞 ;

Algorithm 4: Prediction Process for CANTOR

Input: User latent vectors 𝑝𝑖 ; item latent vectors 𝑸 ;
Number of top recommendations 𝐾

Output: The indices of estimated top-𝐾 recommendations

for the user 𝑖 .

1 𝑧 (𝑝𝑖 ) = argmax𝑡 𝒗
𝑇
𝑡 𝑝𝑖 ;

2 logits = 𝑝𝑇
𝑖
𝑸
[
𝒄𝑧 (𝑝𝑖 )

]
;

3 topIndices = argsort(logits, K) ;

4 return topIndices.

as

𝒄𝑡 =
|𝑠𝑡 |⋃
𝑖=1

𝐶 (𝑠𝑡,𝑖 , 𝐾) . (4)

3.4 Prediction Stage
To predict top recommendations for a user with the latent vector

𝑝𝑖 , CANTOR relies on the clustering model parameterized by the

centroid vector 𝒗𝑡 ∈ R𝑑 and the preferred item set 𝒄𝑡 for each
affinity group 𝑨𝑡 . More precisely, we first compute the affinity

group indicator 𝑧 (𝑝) as:

𝑧 (𝑝𝑖 ) = argmax

𝑟
𝒗𝑇𝑟 𝑝𝑖 , (5)

and evaluate full vector matrix product 𝑝𝑇𝑸𝐼 over the correspond-
ing item vectors of the preferred item set 𝑸𝐼 , 𝐼 = { 𝑗 | 𝑗 ∈ 𝒄𝑧 (𝑝𝑖 ) }.
The computed results are then sorted to provide the final top-𝐾

recommendations for the user. Algorithm 4 shows the procedure

of the prediction process.

4 EXPERIMENTS
In this section, we conduct extensive experiments and in-depth

analysis to demonstrate the performance of CANTOR.

4.1 Experimental Settings
Experimental Datasets.We evaluate the performance in two com-

mon tasks: item recommendation and personalized link prediction,

using six publicly available real-world large-scale datasets as shown

in Table 2. For the task of item recommendation, the MovieLens

20M dataset (MovieLens) [15] consists of 20-million ratings between

users and movies; the Last.fm 360K dataset (Last.fm) [6] contains

the preferred artists of about 360K users; the dataset of Amazon

ratings (Amazon) includes ratings between millions of users and

Table 2: The statistics of six experimental datasets. Note that
the personalized link prediction problem can be mapped to
an item recommendation problem by treating each user as
an item and recommending other users to a user in a similar
way to that of recommending items to a user, and in this case
the numbers of users and items are equal.

Task Item Recommendation

Dataset MovieLens Last.fm Amazon

#(Users) 138,493 359,293 2,146,057

#(Items) 26,744 160,153 1,230,915

Task Personalized Link Prediction

Dataset YouTube Flickr Wikipedia

#(Users) 1,503,841 1,580,291 1,682,759

#(Items) 1,503,841 1,580,291 1,682,759

items [20]. For the task of personalized link prediction, we follow

the previous study [12] to construct three social networks among

users: YouTube, Flickr, and Wikipedia [20]. Note that four of the six

experimental datasets, Amazon, YouTube, Flickr, and Wikipedia,

are available in the Koblenz Network Collection [20].

Evaluation Metrics. To measure the quality of an approximate

algorithm for top-𝐾 recommendation we evaluate the top-𝐾 ap-

proximated recommendations with Precision@𝐾 (P@𝐾 ), which is

defined by

1

𝑚

∑
𝑖

��𝑌 𝑖
𝐾
∩ 𝑆𝑖

𝐾

��
𝐾

,

where𝑌 𝑖
𝐾
and 𝑆𝑖

𝐾
are the top-𝐾 items computed by the approximate

algorithm and full inner-product computations for user 𝑖;𝑚 is the

number of users. To measure the speed of each algorithm, we report

the speedup defined by the ratio of wall clock time consumed by the

full set of𝑂 (𝑚𝑛) inner products to find the top-𝐾 recommendations

divided by the wall clock time of the approximate algorithm.

Baseline Methods. To evaluate our proposed CANTOR, we con-

sider the following five algorithms as the baseline methods for

comparison.

• 𝜖-approximate link prediction (𝜖-Approx) [12] sorts entries of

the latent factor for each dimension to construct a guaranteed

approximation of full inner products.

• Greedy-MIPS (GMIPS) [34] is a greedy algorithm for solving the

MIPS problem with a trade-off controlled by varying a computa-

tional budget parameter in the algorithm.

• SVD-softmax (SVDS) [30] is a low-rank approximation approach

for fast softmax computation. We vary the rank of SVD to control

the trade-off between prediction speed and accuracy.

• Fast Graph Decoder (FGD) [35] directly applies small world graph

on all items 𝑸 and navigates to derive recommended items with

user latent vectors as queries on the proximity graph. It also

serves a direct baseline of only using proximity graph navigation.

• Learning to Screen (L2S) [7] is the first clustering-based method

on fast prediction in NLP tasks with the state-of-the-art results on

inference time but suffers from long preparation time. CANTOR

is inspired by the clustering step in L2S, thus L2S serves as a
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Table 3: Comparisons of top-𝐾 recommendation results on six datasets in two tasks. Note that P@𝐾 measures the precision of
approximating the top-𝐾 recommendations of full inner-product computations. SU indicates the ratio of speedup based on the
original full inner product time of inferring top-𝐾 recommendations. For example, 9.4x means the computation time of the
method is 9.4 times faster than the full inner product computation time. PTmeans the preparation time and IT represents the
inference time in prediction process. The time units of seconds,minutes, and hours are represented as s, m, and h, respectively.
Computation time of the full inner product method for each dataset is 71s (MovieLens), 1,017s (Last.fm), 92,828s (Amazon),
56,824s (Youtube), 71,653s (Flickr), and 72,723s (Wikipedia).

Task Item Recommendation

Dataset MovieLens Last.fm Amazon

Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5

𝜖-Approx 0.7x 0.19s 99.00s 0.753 0.671 0.5x 1.40s 36.78m 0.378 0.467 0.2x 23.42s 107.34h 0.529 0.559

GMIPS 3.9x N/A 18.41s 1.000 0.972 2.3x N/A 7.55m 0.997 0.966 1.8x N/A 14.57h 0.993 0.952

SVDS 1.0x 0.10s 69.00s 1.000 1.000 0.9x 0.10s 19.25m 0.984 0.984 1.3x 5.32s 19.46h 0.952 0.953

FGD 2.8x 4.94s 20.10s 1.000 0.999 10.9x 0.49m 1.07m 0.997 0.988 19.7x 42.76m 35.83m 0.986 0.977

L2S 3.0x 22.15s 1.72s 1.000 1.000 9.0x 1.77m 0.12m 0.993 0.980 21.2x 71.02m 1.86m 0.988 0.979

CANTOR 9.4x 6.17s 1.36s 1.000 0.999 37.1x 0.37m 0.09m 0.999 0.998 29.0x 52.13m 1.26m 0.994 0.991

Task Personalized Link Prediction

Dataset YouTube Flickr Wikipedia

Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5

𝜖-Approx 0.1x 0.3m 129.2h 0.364 0.432 0.4x 0.29m 53.44h 0.545 0.581 0.2x 0.39m 130.61h 0.374 0.480

GMIPS 1.4x N/A 11.12h 0.987 0.965 2.0x N/A 10.10h 0.987 0.962 3.6x N/A 5.64h 0.991 0.974

SVDS 1.0x 0.03m 15.30h 0.965 0.963 1.4x 0.03m 14.00h 0.952 0.946 1.4x 0.03m 14.83h 0.949 0.944

FGD 44.8x 10.28m 10.85m 0.989 0.981 37.5x 17.61m 14.25m 0.985 0.980 93.7x 4.18m 8.76m 0.990 0.985

L2S 6.9x 135.93m 0.79m 0.984 0.968 8.3x 142.84m 0.58m 0.989 0.980 22.4x 53.38m 0.84m 0.988 0.968

CANTOR 112.7x 7.75m 0.65m 0.993 0.985 54.7x 21.31m 0.53m 0.994 0.990 355.1x 2.45m 0.97m 0.995 0.991

direct baseline. In our implementation, random sub-sampling is

applied to choose a subset of users for training L2S.

Note that [34] has shown that Greedy-MIPS outperforms other

MIPS algorithms including LSH-MIPS [27, 31], Sampling MIPS [3]

and PCA-MIPS [1], so we omit those other MIPS algorithms in

our comparisons. Although bandit-based methods [13, 21, 22] have

elegant mathematical properties and theoretical bounds, we did not

include them originally because they generally perform worse than

other methods in practical cases. For example, SCLUB [21], which is

one of the state-of-the-art bandit-based approaches, only achieves

0.81x and 0.62x speedups on the Amazon and Wikipedia datasets

with the official implementations. This is because bandit-based

methods independently manipulate each dimension and cannot

benefit from low-level optimization for linear algebra operations.

Implementation Details. For each dataset, the LIBMF library [8]

is used to train a non-negative MF (NMF) model. More specifically,

the number of dimensions for latent vectors is 10 while the models

are trained with all data for 100 iterations. Note that we adopt NMF

models because of the restrictions of 𝜖-Approx, but CANTOR does

not have any limitation on matrix types. We implement CANTOR

in Python with NumPy optimized by BLAS [4]. For the baseline

methods, the implementations of GMIPS, SVDS, FGD, and L2S are

provided by the original authors and highly-optimized while we

utilize an efficient C++ implementation of 𝜖-Approx. All experi-

ments were run on a 64-bit Linux Ubuntu 16.04 server with 512

GB memory and single thread regime on an Intel
®
Xeon

®
CPU

E5-2698 v4 2.2 GHz.

Hyperparameters in CANTOR. For the general settings of hy-
perparameters in CANTOR, we fix the number of sub-sampled user

latent vectors 𝑢 as 50,000 and the number of clusters 𝑟 as 8. For

adaptive representative selection, we set the number of iterations in

the adaptive selection 𝑇 as 10 and the similarity threshold 𝜖 as 0.99.

The number of new representatives𝑤 in adaptive representative

selection algorithm is set as 8. We also tune the size of dynamic

nearest neighbor lists efs in the construction of hierarchical small

world graphs for each dataset to achieve acceptable accuracy scores.

As a result, the selections of efs are 200, 200, 1,500, 500, 1,500, and
100 for the datasets MovieLens, Last.fm, Amazon, YouTube, Flickr,

and Wikipedia, respectively.

4.2 Performance Comparison
To fairly compare the performance, for each dataset, we tune the

parameters such that each method can roughly achieve 0.99 P@1

accuracy. Table 3 shows the efficiency and the precision scores of

CANTOR and all baseline methods on six datasets. Note that since

the open-sourced library of GMIPS does not provide the breakdown

of execution time into preparation and prediction time, the reported

time includes both preparation and prediction processes. Among

the baseline methods, FGD performs the best because it exploits

the state-of-the-art algorithm for approximate nearest neighbor

search to retrieve recommendations for each user. Although L2S is

the most efficient baseline in the inference process, its preparation

process is slow so that the overall speedup is further degraded. SVDS

can efficiently decompose the preference matrix as its preparation

process, but it still requires to examine all items many times to

achieve sufficient accuracy so that the acceleration is unsatisfactory.

In addition, it is worth noting that, although 𝜖-Approx theoretically

needs fewer multiplications than the full evaluation, it actually does

not provide any acceleration in practice. Similar to bandit-based
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(b) Last.fm
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(c) Amazon
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(d) YouTube
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(e) Flickr
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(f) Wikipedia

Figure 3: The ratios of speedup and the P@1 scores of
CANTOR over different numbers of sampled users 𝑢 in six
datasets.

methods, this is because each dimension is independently processed

so that the model cannot benefit from any low-level optimization

for linear algebra operations.

Our approach CANTOR significantly outperforms all of the base-

line methods in accelerating the overall execution time to provide

top-𝐾 recommendations in all datasets. More specifically, CANTOR

has similar inference time for the prediction process to that of L2S

(that also reduces the candidate item sets for less computation) but

the preparation process of CANTOR is much faster. This is because

similarities between user latent vectors are well leveraged to avoid

unnecessary and redundant computation.

4.3 Number of Sub-Sampled User Latent
Vectors 𝑢

Since only a small subset of user latent vectors will be sub-sampled

for user clustering, we verify how the number of sub-sampled users

affects the performance in both efficiency and accuracy. Figure 3

illustrates the P@1 scores and the ratios of speedup of CANTOR

for different numbers of sampled users in six datasets. It is obvious

that smaller number of sampled user latent vectors is accompanied

with greater speedup and lower P@1 score. However, CANTOR

can generally achieve 99% P@1 scores after sampling more than
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(b) Last.fm
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Figure 4: The ratios of speedup and the P@1 scores of CAN-
TOR over different sizes of the hyperparameter efs in six
datasets.

around 10
4
users in all datasets. In other words, the distribution of

the whole dataset can be preserved by sampling a small portion of

users. For example, the Wikipedia dataset needs to sample only 5%

of all users for high accuracy of recommendations.

4.4 Trade-off in Proximity Graph Construction
Proximity graph plays an important rule in CANTOR while the

hyperparameter efs controls a trade-off between the efficiency and

accuracy for generating the preferred item sets. Figure 4 depicts

the P@1 scores and the speedup ratios of CANTOR for different

efs in six datasets. Obviously, a too-small efs leads to unsatisfactory
approximation and low accuracy scores. More precisely, the 𝑃@1

scores considerably drops when efs is below 10
2
. On the other hand,

CANTOR works well when efs is greater than 10
3
in all datasets.

Hence, we suggest to tune efs in the range between 10
2
and 10

3
to

reach a balance between efficiency and accuracy.

4.5 Number of Affinity Groups 𝑟
Figure 5 shows the performance of CANTOR with different num-

bers of user affinity groups 𝑟 in six datasets. When there are more

affinity groups, the sizes of preferred item sets shrink because of

fewer representative vectors for each cluster. As a consequence,
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Figure 5: The ratios of speedup and the P@1 scores of
CANTOR over different numbers of affinity groups 𝑟 in six
datasets.

CANTOR with larger group numbers considers fewer items in each

affinity group, thereby achieving greater speedup. It is also noted

that the great speedup comes with slight drop in accuracy. For

example, there is only a 0.1% drop from 𝑟 = 2 to 𝑟 = 16. From

these results, we suggest to set the number of user clusters 𝑟 as a

reasonable large number.

4.6 Effectiveness of Adaptive Representative
Selection

The adaptive representative selection (ARS) method as shown in

Algorithm 2 is important for CANTOR to accelerate the prepara-

tion process, so we also evaluate its effectiveness and robustness.

Figure 6 illustrates the preparation time of CANTOR in six datasets

with and without applying ARS. As a result, CANTOR using adap-

tive representative selection significantly outperforms the one with-

out using ARS across all datasets when achieving similar accuracy.

This further demonstrates the effectiveness and robustness of the

adaptive representative selection method.

5 RELATEDWORK
In this section, we discuss the related work in collaborative filtering

for recommender systems and maximum inner product search.
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Figure 6: The preparation time of CANTOR with (w/) and
without (w/o) the adaptive representative selection method
(ARS) in six datasets.

5.1 Collaborative Filtering for Recommender
Systems

Collaborative filtering (CF) [9] is one of the most popular solu-

tions for recommendation problems, including the task of top-𝐾

recommender systems in this paper. Moreover, the low-rank as-

sumption in CF further leads to the prominence of latent factor

models or matrix factorization (MF) [19]. For example, Kang et al.

[17] exploited MF models to optimize numerical ratings for top-𝐾

recommenders while Rendle et al. [29] observed pairwise implicit

feedback in a one-class preference matrix and enhanced the person-

alized ranking performance of MF models. However, MF models

can be time-consuming in inferring recommendations. More specif-

ically, although MF models can be trained efficiently with sparse

preference matrices, the number of possible recommendations can

be enormous when the numbers of users and items are massive. To

tackle this problem, Duan et al. [12] proposed to separately com-

pute dot-product results in each dimension so that some items can

be discarded if their dot-product values are below a threshold for

specific dimensions. However, separately processing different di-

mensions and discarding certain entries not only lead to inaccuracy,

but also give up the opportunity to take advantage of low-level

runtime optimization like BLAS [4] as shown in our experiments.

Moreover, this approach does not reduce the number of possible
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recommendations. On the other hand, although some of the previ-

ous studies [18, 28] achieve acceleration by group recommendation,

users in a certain group would receive identical recommendations

that can be unsatisfactory for individual users. To the best of our

knowledge, this paper is the first work leveraging each user infor-

mation to accelerate the inference process for top-𝐾 recommender

systems without accuracy loss.

5.2 Maximum Inner Product Search
Maximum inner product search (MIPS) can be treated as a closely

related problem to MF based top-𝐾 recommender systems. Shri-

vastava and Li [31] and Neyshabur and Srebro [27] proposed to

reduce MIPS to nearest neighbor search (NNS) and then solve NNS

by Locality Sensitive Hashing (LSH) [16]. PCA tree [32] partitions

the space according to the directions of principal components and

shows better performance in practice. Bachrach et al. [1] showed

tree-based approaches can be used for solving MIPS but the perfor-

mance is poor for high dimensional data. Malkov et al. [25], Malkov

and Yashunin [26] recently developed an NNS algorithm based on

small world graph. Zhang et al. [35] applied the MIPS-to-NNS re-

duction and showed that graph-based approach performs well on

neural language model prediction. Some algorithms were proposed

to directly tackle MIPS problem instead of transforming to NNS.

For example, Yu et al. [34] proposed Greedy-MIPS and showed

a significant improvement over LSH and tree-based approaches.

Another branch of research exploited sampling techniques with

guaranteed approximation precision. Liu et al. [24] applied a bandit

framework to iteratively query each dimension of the item vector;

Ding et al. [10] proposed a 2-stage entry-wise sampling scheme

and constructed an alias table to accelerate the sampling process.

Despite having theoretical guarantee of approximation precision,

in practice these methods suffer from slow entry-wise computa-

tion and the speedup is thus limited or even worse than the naive

computation. Among all previous works, learning to screen (L2S)

proposed by Chen et al. [7] is most similar to our method. L2S also

leverages the clustering architecture to accelerate MIPS computa-

tion of multiple NLP tasks. However, L2S takes a long preparation

time as it finds the clustering by end-to-end training and constructs

a reduced search space by naive computation. In addition, L2S does

not use representative vectors which differs from our proposed

method. In our experiments, hierarchical graphical models [35],

Greedy-MIPS [34] and L2S [7] are selected as the state-of-the-art

MIPS methods for comparison.

Another related problem is the Maximum All-pair Dot-product

(MAD) problem discussed in [3]. However, their goal is to find top-

𝐾 user-item pairs among all𝑚𝑛 pairs (𝐾 largest elements in the

𝑚-by-𝑛 preference matrix), while our goal is to find top-𝐾 items

for each user (top-𝐾 elements in each row).

6 CONCLUSIONS
In this paper, we propose a novel framework for accelerating large-

scale top-𝐾 recommender systems by exploiting user relationships

and the redundancy of user vectors in the latent space. Our model,

CANTOR, first clusters users into affinity groups, thereby deter-

mining as a user coreset of representative vectors for each group so

that only a limited number of preferred items need to be examined

for the users in the affinity group. Moreover, we mathematically

prove that user coresets can be efficiently constructed by set covers

of sub-sampled user latent vectors with an asymptotically guar-

anteed bound. Experimental results demonstrate that CANTOR

significantly outperforms existing MIPS and approximate MF algo-

rithms for accelerating top-𝐾 recommender systems. In particular,

CANTOR achieves 355x and 29x speedup on the largest Wikipedia

and Amazon datasets in two tasks while the accuracy scores still

remain to be 99% for both P@1 and P@5. Moreover, the results of

analysis also show the effectiveness and robustness of CANTOR.
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APPENDIX
A PROOF OF THEOREM 1

Proof. Without loss of generality, we assume that vectors in 𝑨𝑡 , 𝑸 ,

and 𝒔𝑡 have unit norms. ∀𝑞 ∈ 𝑸, 𝑖 ∈ 𝑨𝑡 , we have:

|𝑝𝑖𝑞𝑇 − N𝒔𝑡 (𝑝𝑖 ) 𝑞𝑇 | =
��(𝑝𝑖 − N𝒔𝑡 (𝑝))𝑞𝑇

��
(𝑎)
≤

√
𝑑 ∥𝑝𝑖 − N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 ∥2 ≤

√
𝑑 ∥𝑝𝑖 − N𝒔𝑡 (𝑝𝑖 ) ∥2 ≤

√
𝑑 ∥𝑝𝑖 − N𝒔𝑡 (𝑝𝑖 ) ∥22

=
√
𝑑

(
∥𝑝𝑖 ∥22 + ∥N𝒔𝑡 (𝑝𝑖 𝑗 ) ∥

2

2
− 2N𝒔𝑡 (𝑝𝑖 )𝑝𝑇𝑖

) (𝑏)
≤

√
𝑑 [2 − 2𝜖 ] = 𝛿,

where we define 𝛿 =
√
𝑑 [2 − 2𝜖 ]. (a) follows from the fact that ∥ · ∥1 ≤√

𝑑 ∥ · ∥2, where d is the dimension of the vector. (b) follows from the

condition of theorem. □

B PROOF OF THEOREM 2
Proof. Since 𝒔𝑡 is a 𝜖 set cover of 𝑝𝑖s, there exist a 𝛿 such that

𝒔𝑡 is a 𝛿-user coreset of 𝑝𝑖s. Therefore, for any given query q and

vector 𝑝𝑡 sampled from 𝑷𝑨𝑡
, we have

|N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 − 𝑝𝑡𝑞𝑇 | = |N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 − 𝑝𝑖𝑞𝑇 + 𝑝𝑖𝑞𝑇 − 𝑝𝑡𝑞𝑇 |

≤ |N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 − 𝑝𝑖𝑞𝑇 | + |𝑝𝑖𝑞𝑇 − 𝑝𝑡𝑞𝑇 | ≤ 𝛿 + |𝑝𝑖𝑞𝑇 − 𝑝𝑡𝑞𝑇 |
Since 𝑝𝑖 and 𝑝𝑡 follow the same distribution, 𝑝𝑖 and 𝑝𝑡 will have

same expectation value and we have:

E[|N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 − 𝑝𝑡𝑞𝑇 |] ≤ E[𝛿 + |𝑝𝑖𝑞𝑇 − 𝑝𝑡𝑞𝑇 |]

= 𝛿 + E[|𝑝𝑖𝑞𝑇 − 𝑝𝑡𝑞𝑇 |]
(𝑎)
≤ 𝛿 + | E[𝑝𝑖𝑞𝑇 ] − E[𝑝𝑡𝑞𝑇 ] |
= 𝛿,

where (a) follows the Jensen’s inequality. Therefore, by Hoeffding’s

inequality, with probability at least 1 - 𝛾 ,

1

𝑘

𝑘∑
𝑖=1

���N𝒔𝑡 (𝑝𝑖 ) 𝑞𝑇 − 𝑝𝑡𝑞𝑇
��� ≤ 𝛿 +√

2 log (1/𝛾)
𝑘

.

By the fact that for any set 𝑆 , min(𝑆) ≤ mean(𝑆), we will have:

min

𝑖

(��N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 − 𝑝𝑡𝑞𝑇
��) ≤ 1

𝑘

𝑘∑
𝑖=1

��N𝒔𝑡 (𝑝𝑖 )𝑞𝑇 − 𝑝𝑡𝑞𝑇
��

≤ 𝛿 +
√

2 log(1/𝛾 )
𝑘

,

□
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