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ABSTRACT
Identifying and recommending potential new customers for local
businesses are crucial to the survival and success of local businesses.
A key component to identifying the right customers is to under-
stand the decision-making process of choosing a business over the
others. However, modeling this process is an extremely challenging
task as a decision is influenced by multiple factors. These factors
include but are not limited to an individual’s taste or preference,
the location accessibility of a business, and the reputation of a busi-
ness from social media. Most of the recommender systems lack
the power to integrate multiple factors together and are hardly
extensible to accommodate new incoming factors. In this paper, we
introduce a unified framework, CORALS, which considers the per-
sonal preferences of different customers, the geographical influence,
and the reputation of local businesses in the customer recommen-
dation task. To evaluate the proposed model, we conduct a series of
experiments to extensively compare with 12 state-of-the-art meth-
ods using two real-world datasets. The results demonstrate that
CORALS outperforms all these baselines by a significant margin in
most scenarios. In addition to identifying potential new customers,
we also break down the analysis for different types of businesses to
evaluate the impact of various factors that may affect customers’
decisions. This information, in return, provides a great resource for
local businesses to adjust their advertising strategies and business
services to attract more prospective customers.
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1 INTRODUCTION
Recommender system has attracted substantial attention from re-
searchers since the last decade and has revolutionized the e-commerce
industry. Various recommender systems have been developed to fa-
cilitate the matching between customers with appropriate products
or services, such as movies on Netflix, music on Last.fm, and mer-
chandises on Amazon. For customers, recommendations improve
user experience by providing helpful suggestions to explore and
discover relevant products or services. For providers, these recom-
mendations increase the propensity of purchases from customers.

Over the past few years, the prevalence of GPS-enabled devices,
such as smart phones, establish the prosperity of location-based
social networks (LBSN), such as Foursquare, Yelp, and Facebook
Local. LBSN attracts millions of users to share their social friendship
and their locations via check-ins. For example, an average of 142
million users check in at local businesses via Yelp every month [42].
Foursquare has 55 million monthly active users and 8 million daily
check-ins on the Swarm application [29]. Facebook Local, powered
by 70 million businesses [6], facilitates the discovery of local events
and places for over one billion active daily users [25]. The check-
ins, which contain abundant hints of user preferences on locations,
allow us to identify potential new customers for local businesses.

To identify potential new customers, the most crucial thing is
to understand a customer’s decision-making process. However, it
is a complex process, and can be influenced by multiple factors.
Most investigated factors are personal preferences and geographi-
cal convenience. Personal preferences are learned from customers’
historical check-ins by applying collaborative filtering or matrix
factorization techniques. The learned preferences, in return, help
us find out new businesses which customers are interested in. In
addition, check-in locations provide an ancillary resource to in-
terpret customers’ decisions from the perspective of geographical
convenience. According to the Tobler’s first law of geography and
the law of demand, the propensity of a customer for a local business
is inversely proportional to the distance between the customer and
the business, which is similar to the probability of purchasing an
item being inversely proportional to the cost.

There are also studies which show that customers prefer learning
from local experts who know the neighborhood well and have
firsthand experience [1, 36]. This is because that online reviews are
becoming more and more influential in establishing and promoting
the reputation of local businesses than ever before. The emergence
of numerous review sites has created an unprecedented and ongoing
online conversation about local businesses. Therefore, a business’
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Table 1: Statistics and densities of six datasets.

Dataset #(Users) #(Items/businesses) #(Ratings/check-ins) Density
Netflix 48,189 17,770 100,480,507 1.17 ×10−1

MovieLens 20M 138,000 27,000 20,000,000 5.37 ×10−3

last.fm 1,892 17,632 92,834 2.78 ×10−3

Yahoo! Music 1,000,990 624,961 262,810,175 4.20 ×10−4

Yelp 1,029,432 144,072 5,099,750 6.94 ×10−6

Foursquare 1,219,322 422,030 693,798 1.35 ×10−6

reputation is more public and more accessible. Customers are able
to see over the “wall” of corporate messaging at what lies behind.
They can get a sense of a business’ true essence through the shared
experiences of other customers. These changes in marketing lead to
a change in customers’ habits. Customers are becoming more and
more review-dependent. This is consistent with the study conducted
by BrightLocal [3]. Compared with the trend in 2010, the number
of people who search for local businesses before consumption is
doubled in 2015 and 2016. Moreover, among all the participants in
the study, 92% of the customers regularly or occasionally read online
reviews, which help them judge whether a local business provides
good services or not. Therefore, the impact of online reviews is
non-negligible and growing.

Although identifying potential new customers is crucial for local
businesses, it is still a very challenging task due to the following
three reasons.

• Data Sparsity. To know and comment on a local business, a
customer has to physically visit that business. Thus, the cost is
higher than that of rating a movie or a song online. Even if a
customer makes the effort to visit the business, he/she often does
not check in due to privacy or safety concerns [38], let alone
writing a review. Therefore, customers’ check-in data is much
sparser than other rating data for movies and music. Table 1
shows the statistics and the densities of four well-known movie
and music rating datasets, together with two LBSN datasets, i.e.,
the Yelp challenge dataset and the Foursquare dataset. Here the
density of a dataset is calculated by the number of ratings/check-
ins divided by the product of the number of users and the number
of items/businesses. The densities of Yelp and Foursquare datasets
are much lower than the ones of Netflix, MovieLens, Last.fm, and
Yahoo! music datasets. The extremely sparse check-in data makes
it challenging for us to accurately model customers’ preferences.

• Geographical Influence. The first law of geography states that
everything is related to everything else, but near things are more
related than distant things [30]. Many studies show that peo-
ple tend to visit nearby local businesses or explore businesses
near the ones that they have visited before [41]. Therefore, a
challenge is how to estimate customers’ activity trajectories or
zones based on the sparse check-in data. Beyond this estimation,
a more challenging fact is that the geographical influence is both
customer-dependent and business-dependent. If a customer owns
a car, he can visit a faraway business with less effort than ones
who cannot drive and rely on public transits. On the other hand,
the geographical factor has different impacts on different types of
businesses. For example, customers tend to visit nearby fast-food
businesses for convenience. However, they may be willing to
travel farther to visit other types of businesses, such as museums,
where they are more closely connected with cultures and get
inspirations, or salons where they can have their hair cut and
styled by professionals.

• Reputation Influence. Nowadays, more and more customers
rely on online reviews to get a sense of the reputation of local
businesses. These reviews implicitly influence customers’ deci-
sions towards visiting a business. The influence of reviews is also
both customer-dependent and business-dependent. Different cus-
tomers have different opinions on the same review. Moreover,
similar reviews may have different impacts on different types
of businesses. For example, a review such as “A bit of long wait”
to a fast-food business may give other customers a very nega-
tive impression. However, the impact may be milder if the same
comment is made on theme parks, such as Universal Studios.

In addition to the three challenges above, given the heterogeneous
information on check-in, location, online reviews, current works
also lack an integrated analysis of personal preferences, geographi-
cal influence, and business reputation when modeling customers’
decisions. To the best of our knowledge, this work is the first one
considering all these factors under the scenario of recommend-
ing customers for local businesses. To be more specific, the main
contributions of this work are as follows:
• We propose a customer recommendation model, CORALS, which,
based on historical check-in information, integrates customers’
personal preferences, geographical influence, and business rep-
utation. In addition, the model is also capable of incorporating
other factors such as expenses. Moreover, the model offers high
interpretability by providing the quantitative importance of in-
corporated factors for different types of local businesses.

• We present a comprehensive empirical evaluation of our ap-
proach against 12 recommendation methods on two real-world
datasets. The results show that our approach, CORALS, outper-
forms all baseline methods in suggesting potential new customers
for local businesses in different cities.

2 METHODOLOGY

Table 2: List of symbols

Symbol Description
tb,i personal preference of customer i on business b
дb,i geographical convenience of business b for customer i
rb,i reputation reliance of customer i on business b
wд
b the geographical influence weight on business b

wr
b the reputation influence weight on business b

pb latent feature vector for business b
qi personal preference feature vector for customer i
ub business reputation vector for business b
di reputation reliance vector for customer i
η learning rate
λ regularization parameters
Θ recommendation parameters
∇θ gradient of parameter θ
Φ Gaussian mixture model parameters
l business location defined by latitude and longitude pair
M number of Gaussian components

Table 2 lists the notations we use in this paper. We use bold
letters for vectors and normal letters for scalars.

As we mentioned in the introduction, the key to addressing the
recommendation problem is to accurately understand customers’
decision-making processes. In this work, we decompose it into
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three main factors: a customer i’s personal preference tb,i over
a business b, the geographical convenience дb,i of business b for
customer i , and customer i’s reliance rb,i on business b’s reputation.
In addition, the contributions of дb,i and rb,i are given bywд

b and
wr
b , respectively. Formally, the tendency of a customer i’s visiting a

business b is given by:

tb,i +w
д
bдb,i +w

r
brb,i . (1)

Higher tendency indicates higher check-in likelihood.
Given an observed check-in from customer i on business b, de-

noted by (b, i), applying the idea of pair-wise comparisons, we
sample another customer j who has not checked in at business
b. Now, for a business b, we have an observed check-in (b, i) and
a sampled unobserved check-in (b, j). It is logical to hypothesize
that compared with customer j, customer i is more likely to visit
business b. We construct the model by maximizing a posteriori over
all observed and sampled check-ins:

C =
∏

(b,i), j

p(i >b j |Θ)p(Θ), (2)

where Θ is a set of parameters, which define the model. p(i >b j |Θ)
gives the probability that a customer i prefers a business b more
than another customer j does under the model. Formally,

p(i >b j |Θ) = δ [(tb,i −tb, j )+w
д
b (дb,i −дb, j )+w

r
b (rb,i −rb, j )], (3)

where δ (x) is the sigmoid function:

δ (x) =
1

1 + e−x
. (4)

In addition, the personal preference of customer i on business b is
given by:

tb,i = pb · qi , (5)
where pb and qi are business and customer vector representations
in the preference hidden space, respectively. Similarly, the reputa-
tion reliance of a customer i on a business b is given by:

rb,i = ub · di , (6)
where ub and di are business and customer vector representations
in the reputation hidden space, respectively. Using Gaussian priors
Θ ∼ N (0, λθ I ) to model the parameters, we have

p(Θ) =
1

√
2πσ

e(−
∥Θ∥2

2σ 2 ). (7)

Substituting Equations 3, 4, 5, 6, 7 into the objective Equation 2, we
can derive maximizing a posteriori as follows:
C ∝ ln

∏
(b,i ), j

p(i >b j |Θ)p(Θ)

=
∑

(b,i ), j

ln δ [(tb,i − tb, j ) +w
д
b (дb,i − дb, j ) +w

r
b (rb,i − rb, j )] + lnp(Θ)

=
∑

(b,i ), j

ln δ [(tb,i − tb, j ) +w
д
b (дb,i − дb, j ) +w

r
b (rb,i − rb, j )] − λ ∥Θ∥2

=
∑

(b,i ), j

{ln δ [(pb · qi − pb · qj ) +w
д
b (дb,i − дb, j ) +w

r
b (ub · di−

ub · dj )] − λ ∥Θ∥2 },

where λ is a set of regularization parameters for Θ. Here, the busi-
nesses’ geographical convenience, дb,i , and businesses’ reputations,
ub , are inputs. These two factors will be discussed in Sections 2.1
and 2.2, respectively.

Algorithm 1: Parameter optimization with AdaGrad

Input: learning rate η, max iteration itermax , regularization weights
λ, max number of samples Smax ;

Output: Θ
1 Initialization: initialize Θ with Normal distribution N (0,0.01),

iter = 0, Θopt = Θ, erropt = errvali ;
2 repeat
3 foreach observed check-in (b, i) do
4 Counter cnt = Smax ;
5 while cnt > 0 do
6 Randomly generate an unobserved customer j ;
7 if (tb,i − tb, j ) +w

д
b (дb,i − дb, j ) +wr

b (rb,i − rb, j ) > 0
then

8 cnt - -;
9 else

10 foreach involved θ do
11 ∇θ ts = ∂ J

∂θ ts ;
12 nts+1

θ = ntsθ + (∇θ
ts )2;

13 θ ts+1 = θ ts − η√
ntsθ +ϵ

∇θ ts ;

14 break;

15 if errvali < erropt then
16 erropt = errvali ;
17 Θopt = Θ;
18 else
19 Θ = Θopt ;
20 iter + +;
21 until iter > itermax ;
22 Return Θopt ;

To optimize top ranked customers in the recommendation list, we
apply the weighted approximate ranking strategy proposed in [33]
to optimize precision@k . Algorithm 1 summarizes the optimization
process. First, the parameters Θ are initialized using Normal distri-
butions. The optimization process is iterative. In each iteration, it
goes through each observed check-in in the training set. For each
observed check-in (b, i), we sample a random customer j who has
not visited business b. If the preference order between i and j on
business b is correctly predicted using the current Θ, we randomly
sample another customer to find a violation. This process repeats
at most Smax times until we find such a violation. Once we find a
violation, we update the corresponding parameter θ , θ ∈ Θ. After
iterating through each check-in in the training set, we evaluate the
performance using the validation set. If the performance increases,
we accept the updates on Θ. Otherwise, we reject the updates. This
step helps us avoid adopting over-fitting parameters on the training
data. The optimization terminates when iter reaches the maximum
number of iterations.

As we mentioned in the introduction, since many businesses and
customers have limited numbers of check-ins, the check-in data
is extremely sparse. However, the parameters of these businesses
and customers can be immensely useful and informative to the
problem we want to optimize. To effectively leverage the sparse
data, AdaGrad [8] is proposed to give a higher learning rate to the
parameters that are more sparse in the data. We adopt this concept
to adjust the learning rate adaptively for each individual parameter
θ , which is shown in lines 10-13 of Algorithm 1. AdaGrad modifies
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the general learning rate η at each time step ts for every parameter
θ based on the past gradients that have been computed for θ . nts+1

θ
records the sum of the squares of the gradients with respect to θ up
to the tsth time step1. ϵ is a smoothing term that avoids division by
zero. In this way, AdaGrad makes it such that parameters that are
more sparse in the data have a higher learning rate which translates
into a larger update for that parameter.

2.1 Geographical Convenience Inference
In this section, we discuss how to infer the geographical conve-
nience of a business b for a user i , i.e., дb,i , based on customer i’s
historical check-ins.

We apply a Gaussian mixture model (GMM) [27] to make the
inference. A Gaussian mixture model is a weighted sum ofM com-
ponent Gaussian densities:

p(l|Φ) =
M∑

m=1
αmд(l|µm , Σm ), (8)

where l is a 2-dimensional location vector (i.e. latitude and longi-
tude), αm ,m = 1, ...,M , are the mixture weights, and д(l|µm , Σm )

are the component Gaussian densities. Each component density is
a 2-variate Gaussian function of the form,

д(l|µm , Σm ) =
1

2π |Σm |1/2 e
− 1

2 (l−µm )′Σ−1
m (l−µm ),

with mean location vector µm and covariance matrix Σm . The com-
plete Gaussianmixturemodel is parameterized by themean location
vectors, covariance matrices and mixture weights from all compo-
nent densities. These parameters are further collectively notated
by Φ. For a particular customer, given a sequence of his N check-in
locations, represented by N location vectors L = {l1, .., lN }, the
GMM likelihood, assuming conditional independence between the
location vectors, can be written as:

p(L|Φ) =
N∏
n=1

p(ln |Φ).

We use the Expectation-Maximization (EM) [7] algorithm to es-
timate the parameters. The EM algorithm begins with an initial
model Φ, to estimate a newmodel Φ̄, such that p(L|Φ̄) ≥ p(L|Φ). The
new model then becomes the initial model for the next iteration
and the process is repeated until convergence. In each EM itera-
tion, re-estimation Equations 9, 10, and 11 are used to guarantee a
monotonic increase in the model’s likelihood value in the E-step.

Mixture weights: ᾱm =
1
N

N∑
n=1

p(m |ln ,Φ), (9)

Location means: µ̄m =
∑N
n=1 p(m |ln ,Φ) · ln∑N
n=1 p(m |ln ,Φ)

, (10)

Variances: σ̄ 2
m =

∑N
n=1 p(m |ln ,Φ) · l2n∑N
n=1 p(m |ln ,Φ)

− µ̄2
m , (11)

In the M-step, the posteriori probability for componentm is given
by

p(m |ln ,Φ) =
αmд(ln |µm , Σm )∑M

m=1 αmд(ln |µm , Σm )
.

1In one iteration, the same parameter may be optimized multiple times. Each optimiza-
tion counts 1 time step.

To determine the number of Gaussian componentsM , we apply
affinity propagation [9] to cluster each customer’s check-ins. The
number of clusters yields the number of Gaussian components.

After the GMM construction for a customer i , given the geo-
graphical location lb of a businessb, as shown in Equation 8,p(lb |Φ)
gives the geographical convenience дb,i of the business b for each
customer i .

2.2 Business Reputation Inference from
Reviews

In this section, we discuss how to model the business reputation,
ub , based on the reviews commented on the local businesses.

There are two main challenges. First, reviews differ in their
lengths. Some reviews are informative and have more words while
others are not. This challenge makes it difficult to model the busi-
ness’s reputation ub in a fixed-length vector. Second, for a particular
business, some reviews are older while others are more recent. They
may have different influences on the reputation of the business.

O h+3

O OU O

Classifier

Concatenate

Review Matrix

Review id o h o h+1 oh+2

Fixed-length vector

Figure 1: The framework for learning review vector

To solve the first challenge, we apply a distributed memory
model proposed in [16]. Figure 1 shows the framework for the
vector learning task, which is to predict a word given other words
in a context. Formally, given a sequence of training words o1, o2,
o3, ..., oH , the objective of the model is to maximize the average log
probability

1
H

H−k∑
h=k

loдp(oh |oh−k , ...,oh+k ).

The prediction task is performed via a multiclass classifier, i.e.,
softmax. Then, we have:

p(oh |oh−k , ...,oh+k ) =
eyoh∑
o e

yo
.

Each yoh is the un-normalized log probability for each output word
oh , calculated as:

yoh = V0 +Vz(oh−k , ...,oh+k ,U ),

where V0 and V are the softmax parameters. z is constructed by a
concatenation of a review vector and word vectors from O . Both
review and word vectors are trained using stochastic gradient de-
scent (SGD) and the gradient is obtained via back propagation. At
each step of SGD, we sample a fixed-length context from a random
review, compute the error gradient and update the parameters in
the model. Once the parameters get converged, we obtain the dense
representation of each review. In order to address the impact of the
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chronological order of the reviews, we use the vector of the most
recent review as the reputation vector of the business, ub .

3 EXPERIMENTS
In this section, we conduct extensive experiments on two real-world
datasets to evaluate the performance of CORALS.

3.1 Datasets and Experimental Settings
The experiments are conducted on two datasets. One is the most
recently released dataset from the Yelp challenge. The other is the
Foursquare dataset. The Yelp dataset contains interactions between
customers and businesses, with 4.1M reviews and 947K tips by
1M users for 144K businesses. We investigate the recommendation
tasks in 7 large cities. The Foursquare dataset contains interactions
between customers and businesses in Los Angeles and New York.
Table 3 shows the statistics for the 9 cities in the two datasets.

Unfortunately, some businesses do not accumulate an adequate
amount of check-ins. Moreover, some customers lack sufficient
check-ins to infer their preferences. We follow the data cleaning
strategy in [13] and filter out businesses and customers whose
check-ins are less than 20 for the Yelp dataset. For the Foursquare
dataset, we follow the cleaning steps in [2] and remove business
and customers that have less than 8 check-ins. For each business, its
check-ins are sorted in chronological order based on the timestamps.
The first 50% of the check-ins are used as the training data. The
following 20% are used for validation and the remaining 30% are
used as the test data for evaluation. Table 4 shows the parameter
settings of CORALS in the experiments. These parameters are tuned
by grid search.

3.2 Baselines
To compare our approach with others, the following 12 methods
are adopted as baselines.

• Weighted Regularized MF (WRMF). WRMF [15] minimizes
the square error loss by assigning both observed and unobserved
check-ins with different weights based on matrix factorization.

• Maximum Margin MF (MMMF). MMMF [32] minimizes the
hinge loss based on matrix factorization.

• Bayesian Personalized Ranking MF (BPRMF). BPRMF [26]
optimizes Area Under the Curve (AUC) based on pairs of observed
check-ins and sampled unobserved check-ins.

• CofiRank. CofiRank [31] optimizes the estimation of a ranking
loss based on Normalized Discounted Cumulative Gain (NDCG).

• CLiMF. CLiMF [28] optimizes a different ranking-oriented loss,
i.e., Mean Reciprocal Rank (MRR) loss.

• WARP. In [33], Weighted Approximate-Rank Pairwise loss is
proposed to optimize precision@k . WARP loss differs from AUC
loss in updating parameters. WARP keeps drawing negative sam-
ples until getting a disordered prediction or reaching a cutoff
value.

• kOS. k−Order Statistic loss is proposed in [34] and provides a
variant that optimizes precision@k .

• USG. USG [41] is a collaborative filteringmethod. It utilizes social
and geographical information to improve recommendations.

• GeoMF. GeoMF [20] is a geographically weighted matrix factor-
ization model.

• Rank-GeoFM. Rank-GeoFM [18] incorporates geographical and
temporal information to provide recommendations.

• ASMF. ASMF [17] utilizes geographical information, social in-
formation, and attributes of businesses to enhance the accuracy
of recommendations.

• ARMF. ARMF [17] extends ASMF by applying ranking losses.
Among these 12 baseline methods, WRMF is a point-wise matrix
factorization method while MMMF and BPRMF are pair-wise based.
CofiRank, CLiMF, WARP, kOS focus on optimizing top ranked
positions. USG, GeoMF, Rank-GeoFM, ASMF, and ARMF utilize
additional information, such as check-in locations, social relation-
ship, businesses’ attributes, and temporal information to improve
the accuracy of recommendations. All parameters in baselines are
tuned based on their guidelines.

In addition to the above baselines, we also implement CORALS 2

with two other gradient-based parameter optimization strategies,
i.e. SGD and RMSprop [12].
• CORALS-SGD. CORALS-SGD applies SGD to conduct optimiza-
tions. All parameters share the same learning rate.

• CORALS-RMSprop. RMSprop [12] is applied to optimize learn-
ing rates adaptively. It addresses the issue of radically diminishing
learning rates in AdaGrad.

3.3 Recommendation Performance
In this section, we evaluate the performances of CORALS and its
variants against the 12 baseline methods. Mean Average Precision
(MAP) is adopted as the evaluation metric. Given a ranked list rl of
potential new customers, the average precision for a business b is:

apb =
1
ω

|r l |∑
pos=1

precision(pos) ∗ rel(pos) (12)

where ω is the number of new customers who visit a business b in
the test set, pos denotes the position in the ranked list rl and |rl |
gives the total number of potential new customers in rl . Customers
are ranked decreasingly based on how likely they will come in
rl . precision(pos) is the precision of a cut-off rank list from 1 to
pos , and rel(pos) is an indicator function that equals to 1 if the
customer visits b in the test set, 0 otherwise. For example, three
new customers visit a business b (i.e., ω = 3) in the test set and
they are ranked at position 2, 4, and 7 in rl , respectively. Therefore,
apb =

1
3 (

1
2 +

2
4 +

3
7 ). The mean average precision is the average of

the average precision of all businesses.

MAP =

|B |∑
b=1

apb/|B | (13)

MAP ranges from 0 to 1, and a higher value indicates a better
performance in recommendation.

Table 5 shows the recommendation performances of different
methods on the nine cities from the two datasets. The top seven
rows show the performances based on the cities in the Yelp dataset,
while the bottom two rows show the performances based on the
cities in the Foursquare dataset. In addition, we further show the
average recommendation performances for the top (10%) and tail
(10%) businesses3 in each city to demonstrate how each method per-
forms when there is a relatively rich or poor amount of check-ins,
respectively. For example, WRMF achieves 0.026 on average for all
2To distinguish the parameter learning algorithms used in CORALS and its variants,
we also call CORALS CORALS-AdaGrad.
3Businesses are sorted based on their check-in numbers. Top businesses are the ones
that have more check-ins, while tail businesses are the ones that have fewer check-ins.
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Table 3: Business and customer statistics

Dataset Yelp Foursquare
City Charlotte Cleveland Las Vegas Madison Phoenix Pittsburgh Toronto Los Angeles New York

# of Customers 69,005 5,578 432,399 26,083 314,610 51,422 58,377 501,940 717,382
# of Businesses 10,652 9,960 282,204 3,895 43,482 8,037 20,849 215,614 206,416

Table 4: Parameter settings

Para. η ϵ itermax Smax λp λq λd λwд λwr |p| |q| |d|
Value 10−3 10−6 5×102 5×102 1 1 1 10−1 10−1 102 102 2×10

businesses in Charlotte. It achieves 0.058 and 0.014 on average for
the top and tail businesses in Charlotte, respectively. We observe
that the more check-ins we have for businesses, the more accu-
rate recommendations we can achieve. This observation applies
to businesses in almost all nine cities under the 15 methods. This
is because the more check-ins we have for businesses, the more
accurately we can infer the style, the geographical influence, and
the reputation of the businesses.

MMMF, BPRMF, CofiRank, CLiMF, WARP, and kOS achieve bet-
ter recommendation performances than WRMF in general. This
verifies that methods achieving low prediction errors do not nec-
essarily have high recommendation accuracies. In other words,
directly optimizing the predicted check-ins may not always pro-
vide the best recommendation lists to businesses. CofiRank, CLiMF,
WARP, and kOS further outperformMMMF and BPRMF due to their
optimizing strategies. They optimize NDCG, MRR, precision@k ,
and precision@k , respectively, which all focus on better optimizing
the top-ranked customers on the list. BPRMF, which optimizes AUC,
focuses on optimizing the entire list of customers. CofiRank, CLiMF,
WARP, and kOS outperform USG, which shows the advantage of the
learning-to-rank recommendation methods. Even without utilizing
location and social information, they can accurately infer customer
preferences and achieve good recommendation performances. In
general, WARP achieves the best recommendation performance
among the 7 methods in the upper table, where only check-in in-
formation is utilized to infer customer preference.

GeoMF, Rank-GeoFM, ASMF, and ARMF outperform WRMF,
MMF, BPRMF, CofiRank, CLiMF, and kOS in general. It shows that
incorporating ancillary information compensate for the sparsity
issue in location-based recommendation tasks. The performance of
Rank-GeoFM is not as good as the one of GeoMF. This is because
Rank-GeoFM, which incorporates temporal information, intends
to predict the next point of interest (POI) to visit, while the task in
this work is to predict new customers for POIs. GeoMF achieves
better MAP than ASMF and ARMF. This might be because ASMF
and ARMF focus on utilizing social information, while learning
geographical influence might be a better way to improve recom-
mendation performances in location-based tasks.

CORALS-AdaGrad or its variants outperform all 12 baseline
methods with few exceptions, which demonstrates the effectiveness
of CORALS-AdaGrad. In particular, CORALS-AdaGrad increases the
meanMAP by 51% and 33% against WARP and GeoMF, respectively.
Bold numbers in Table 5 indicate the winners for the same city and
the same group of the business. In summary, CORALS-AdaGrad or
its variants win in all scenarios except in Las Vegas where WARP
and ASMF score slightly better.

3.4 Geographical Preference Inference
In this section, we will use examples to verify that the geographical
influence is both business-dependent and customer-dependent.

We first use three case examples to show the geographical in-
fluence on different types of local businesses. We select three local
businesses in Phoenix, i.e. the Phoenix Art Museum, a branch of
McDonald’s, and Alo Cafe. Figures 2a, 2b, 2c show the locations
of the three businesses, represented by a blue mark each, together
with the heat maps of their visitors. The location of a visitor is
estimated by the average of all locations he/she has visited. There
are two interesting observations. First, Phoenix Art Museum has
more check-ins than McDonald’s and Alo Cafe do. Second, the
majority of the check-ins of McDonald’s and Alo Cafe come from
their nearby regions while the visitors of Phoenix Art Museum are
scattered in the entire Phoenix. In addition, the number of museums
in Phoenix is much fewer than the numbers of fast-food businesses
and cafes. The rationale behind the observations is that people tend
to get services from nearby businesses if the services are available
since it takes less effort. However, for some business that is only
available in a remote location, the customers may be more tolerant
of traveling a long distance. Therefore, businesses such as fast-food
and cafes get influenced more by the geographical convenience
than businesses like museums. In CORALS, parameterwд

b is used
to model the geographical influence on a business b. Higher values
ofwд

b indicate greater influences on the geographical convenience.
In Section 3.6, we show a detailed analysis ofwд

b on various types
of businesses.

Then, we study the geographical influence on individual cus-
tomers. We randomly sample two customers from Las Vegas and
plot their check-ins in Figures 4a and 4b, respectively. We observe
that the two customers have their own exploration preferences.
User 1 tends to explore the main street in Las Vegas, while user 2
not only explores the main street but also checks in at the north-
western region of Las Vegas. Given a local business b, represented
by the black marker, GMM tells дb,u1 < дb,u2 , which indicates that
business b is more geographically convenient for user 2. The geo-
graphical convenience information, embedded in the GMM, helps
CORALS better understand customers’ decision-making processes
from the perspective of the convenience of the local businesses.

Note that for each customer, we group his/her check-ins by
affinity propagation to derive the number of components in the
GMM. Figure 3 shows the customer percentage distributions over
the number of exploration centers in different cities. We observe
that most customers have only one or two exploration centers. The
rationale behind it is that most customers explore around their
workplaces or/and residences, which is consistent with the findings
in the previous study [5].
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Table 5: Recommendation performance (MAP). The upper table shows the performances ofmethods using only check-in infor-
mation, and the lower table demonstrates the performances of methods using both check-in and heterogeneous information.
Mean represents the average performance on all businesses in a city. Top represents the average performance on the top 10%
businesses that have more check-ins, and Tail represents the average performance on the tail 10% businesses with fewer
check-ins.

Method WRMF MMMF BPRMF CofiRank CLiMF WARP kOS
City Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail
Charlotte 0.026 0.058 0.014 0.028 0.049 0.028 0.029 0.049 0.029 0.031 0.052 0.024 0.034 0.058 0.024 0.044 0.060 0.036 0.038 0.057 0.024
Cleveland 0.041 0.086 0.029 0.039 0.072 0.025 0.040 0.073 0.030 0.043 0.078 0.042 0.050 0.081 0.043 0.055 0.077 0.046 0.053 0.085 0.041
Las Vegas 0.004 0.012 0.001 0.009 0.016 0.004 0.009 0.016 0.005 0.013 0.024 0.009 0.013 0.022 0.008 0.017 0.025 0.015 0.014 0.023 0.010
Madison 0.067 0.136 0.043 0.066 0.134 0.042 0.058 0.122 0.034 0.063 0.129 0.037 0.054 0.107 0.031 0.061 0.115 0.039 0.058 0.115 0.038
Phoenix 0.004 0.010 0.002 0.008 0.015 0.006 0.008 0.015 0.006 0.011 0.020 0.008 0.011 0.020 0.009 0.020 0.026 0.015 0.015 0.022 0.013
Pittsburgh 0.028 0.067 0.015 0.027 0.053 0.014 0.027 0.054 0.013 0.031 0.065 0.017 0.037 0.073 0.020 0.044 0.071 0.033 0.040 0.069 0.027
Toronto 0.009 0.019 0.005 0.011 0.018 0.009 0.011 0.017 0.009 0.014 0.025 0.011 0.014 0.022 0.011 0.021 0.031 0.019 0.019 0.029 0.015
Los Angeles 0.005 0.007 0.003 0.005 0.006 0.004 0.009 0.009 0.011 0.010 0.008 0.006 0.008 0.013 0.004 0.011 0.019 0.006 0.009 0.012 0.004
New York 0.002 0.003 0.001 0.003 0.004 0.001 0.005 0.005 0.007 0.004 0.004 0.006 0.005 0.005 0.006 0.005 0.007 0.005 0.004 0.005 0.003
Method USG GeoMF Rank-GeoFM ASMF ARMF CORALS-AdaGrad CORALS-RMSprop CORALS-SGD
City Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail
Charlotte 0.029 0.039 0.021 0.035 0.058 0.024 0.035 0.041 0.027 0.027 0.049 0.021 0.037 0.084 0.021 0.056 0.087 0.050 0.055 0.087 0.046 0.056 0.087 0.048
Cleveland 0.048 0.075 0.031 0.044 0.089 0.029 0.043 0.068 0.038 0.047 0.081 0.034 0.056 0.110 0.051 0.091 0.169 0.059 0.090 0.171 0.053 0.085 0.164 0.044
Las Vegas 0.008 0.019 0.004 0.017 0.024 0.012 0.011 0.018 0.010 0.018 0.029 0.011 0.010 0.016 0.005 0.014 0.026 0.010 0.014 0.026 0.010 0.014 0.026 0.010
Madison 0.063 0.104 0.047 0.077 0.148 0.038 0.063 0.112 0.044 0.072 0.151 0.048 0.089 0.184 0.043 0.116 0.192 0.091 0.121 0.210 0.095 0.118 0.212 0.105
Phoenix 0.010 0.017 0.006 0.020 0.023 0.017 0.014 0.016 0.011 0.017 0.023 0.012 0.016 0.019 0.011 0.021 0.029 0.018 0.020 0.030 0.016 0.020 0.029 0.018
Pittsburgh 0.030 0.055 0.023 0.038 0.069 0.032 0.042 0.047 0.030 0.047 0.071 0.030 0.041 0.090 0.033 0.057 0.115 0.035 0.057 0.116 0.034 0.055 0.115 0.033
Toronto 0.014 0.026 0.010 0.022 0.030 0.021 0.016 0.020 0.013 0.018 0.025 0.014 0.012 0.037 0.004 0.027 0.038 0.025 0.026 0.040 0.022 0.026 0.038 0.024
Los Angeles 0.020 0.025 0.017 0.021 0.021 0.017 0.008 0.011 0.006 0.009 0.010 0.007 0.008 0.011 0.004 0.021 0.028 0.023 0.022 0.025 0.023 0.019 0.024 0.019
New York 0.005 0.003 0.006 0.010 0.008 0.008 0.003 0.004 0.002 0.006 0.009 0.005 0.003 0.003 0.003 0.012 0.008 0.012 0.011 0.008 0.010 0.012 0.009 0.011

(a) Phoenix Art Museum (b) One branch of McDonald’s (c) Alo Cafe

Figure 2: Customer heat maps for three local businesses in Phoenix

Figure 3: Exploration Center Distri-
bution

(a) User 1’s explorations (b) User 2’s explorations

Figure 4: Explorations of two customers in Las Vegas

3.5 Reputation Influence Analysis
In this section, we investigate how theMAP performance of CORALS
changes with the number of reviews considered when constructing
businesses’ reputation vectors. First, we do not incorporate any
reviews, notated as 0 reviews. Then, we use 1, 3, 5, 7, 9, and 11 most
recent reviews to construct the reputation vectors of businesses,

respectively. Figure 5 shows the performance of CORALS (mea-
sured by MAP) on the nine cities. In particular, the performance on
the Yelp dataset is plotted in solid lines, while the performance on
the Foursquare dataset is plotted in dashed lines. When we ignore
review information in the model, the performance is relatively poor.
As long as we incorporate the information of the most recent review,
the performance improves. For example, the performance increases
from 0.081 to 0.097 for Madison. However, when we incorporate
more reviews to construct reputation vectors, the performance gain
is marginal. This is mainly due to the fact that customers only read
a few latest reviews to perceive the reputation of the local business.

3.6 Analysis on Contributions of Geographical
Convenience and Reputation Reliance

In this section, we analyze to what extent the geographical conve-
nience and online reviews affect customers’ decisions in visiting
various types of local businesses.

We look into five types of local businesses, i.e. fast-food, bar, cafe,
salon, and museum in the two largest cities, i.e., Phoenix and Las
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Figure 5: MAP performance over number of recent reviews

Table 6: Influential factors study for businesses in Phoenix

Phoenix Fast-food Bar Cafe Salon Museum
Number of businesses 144 302 394 28 8
Geographical influence 0.316 0.313 0.321 0.306 0.248
Review influence 0.101 0.127 0.133 0.241 0.234

Table 7: Influential factors study for businesses in Las Vegas

Las Vegas Fast-food Bar Cafe Salon Museum
Number of businesses 112 280 350 27 9
Geographical influence 0.302 0.29 0.298 0.297 0.232
Review influence 0.070 0.073 0.088 0.203 0.149

Vegas, in terms of the number of customers and businesses. The
type of the business is inferred from the name of the business. For
each type of businesses, we look into their geographical influence
weights wд and reputation influence weights wr , and calculate
the type-wise median of the influence weights. Table 6 shows the
analysis based on the businesses in Phoenix. There are 144 fast-food
restaurants, 302 bars, 394 cafes, 144 salons, and 8 museums. The
geographical influences of fast-food restaurants, bars, and cafes
are all around 0.316. For salons, the low geographical influence
weight, 0.306, indicates that customers arewilling to travel a little bit
farther for better haircare services. For museums, which are fewer
in quantity, customers have to travel farther compared with other
types of businesses. The geographical influence decreases to 0.248.
Moreover, the reputation also has distinct influences on different
types of businesses. The reviews on fast-food restaurants, bars, and
cafes have a relatively small influence on customers’ decisions since
customers care more about the convenience of these types of local
businesses. For museums and salons, where customers care more
about the experiences, reviews have a stronger influence. Table 7
shows the same analysis based on the businesses in Las Vegas,
which is consistent with most discoveries in Phoenix. There is one
interesting discovery about the geographical influence on bars in
Las Vegas, which indicates that customers in Las Vegas are willing
to take more effort in visiting faraway bars compared with fast-food
restaurants, cafes, and even salons. The rationale behind it is that
there are many attractive shows and events in Las Vegas bars.

4 RELATEDWORK
Many recent studies [4, 20, 35, 37, 41, 43, 47] show that there is
a strong correlation between customers’ check-in activities and
geographical distances. Thus leveraging geographical influences to
improve the recommendation accuracy has been noticed by most
of the current location-based recommendation work. For exam-
ple, Cheng et al. [4] first detect multiple centers for each customer
based on their check-in histories. Then it recommends a business
with the probability that is inversely proportional to the distance be-
tween the location of the business and the nearest customer center.
In [41], geographical influence is modeled by a power-law distribu-
tion between the check-in probability and the pair-wise distance of
two check-ins. [21, 45] utilize the kernel density estimation to study
customers’ check-ins and avoid employing a specific distribution.
[24] exploits geographical neighborhood information by assuming
that customers have similar preferences on neighboring POIs and
POIs in the same region may share similar user preferences.

Collaborative filtering algorithm is also used to fuse the check-in
and geographical information, such as POI popularity, social influ-
ence, temporal influence, and content information [10, 11, 14, 17, 19,
22, 41, 43, 44, 46]. [11] conducts sentiment analysis on customers’
comments to infer how good a POI is. [14, 43] apply topic models
to incorporate content information. [17] uses friendship to identify
potential check-ins and optimizes POI recommendations based on
observed, potential, and unobserved check-ins. [40] investigates
the temporal matching between POI popularity and customer regu-
larities to recommend POIs. To model the dynamic and sequential
preferences of customers, Xie et al. [38] developed a graph-based
embedding model to learn the representations of POIs and recom-
mend POIs. [23] developed a bi-weighted low-rank graph model
to learn customer interests and their sequential preferences in a
coherent way. PACE [39] explores the use of deep neural networks
for learning user preferences over POIs.

The proposed method, CORALS, not only provides an integrated
analysis of the joint effect of multiple factors, i.e., personal prefer-
ence, geographical influence, and business reputation, applying the
state-of-the-art learning-to-rank strategy, but also aims at propos-
ing an explainable and flexible framework to look into the impor-
tance of integrated factors.

5 CONCLUSION AND FUTUREWORK
In this work, we study the problem of recommending new cus-
tomers to local businesses in LBSN. We look into the customers’
decision-making processes and propose a model, CORALS, which
integrates customers’ personal preferences, geographical influence,
and businesses’ reputation. We conduct extensive experiments to
demonstrate the effectiveness of CORALS comparing to 12 different
baseline methods on two real-world datasets. CORALS is flexible
to incorporate new features, such as the average expense on the
businesses and the customers’ tolerances of the expenses. The social
network information can also be easily integrated with weighted
negative sampling. Moreover, CORALS can quantify the importance
of incorporated factors for different types of local businesses.
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