Event Duration Detection on Microblogging

Yi-Shiang Tzeng*, Jyun-Yu JiangJr and Pu-Jen Chengi
Department of Computer Science and Information Engineering
National Taiwan University, Taiwan

{*r00944020, 1698902114} @ntu.edu.tw, *pjcheng@csie.ntu.edu.tw

Abstract—Microblog users often post what they observe in
the surroundings, making it possible to use such microblog
data to perform event detection. In this paper, we propose
an issue of event duration detection and choose rain as
our target event. Qur goal is to construct an online virtual
weather station, which reports local weather condition such
as rain with the microblog data. Different from previous
work focusing on earthquake, rain is a relatively minor event
and may continue for a period of time. The virtual station,
therefore, needs to detect not only when it starts but also when
it finishes. The system trains a classifier to extract the event
of interest. A wavelet-based method and aging-based method
are proposed to detect the beginning of the rain event and its
duration, respectively. Our experiments are conducted on real
data, collected from Twitter and online weather stations. The
results of experiments show the feasibility of virtual weather
system. Our user behavior analysis also explains why the
system works.

Keywords-Event Duration; Event detection; Microblog;

I. INTRODUCTION

With the popularity of microblogging service (e.g., Twit-
ter), more and more people share what happens in their
surroundings on the internet, including weather information
such as the posts of “something is shaking my building
like an earthquake” and “it’s raining outside”. Twitter!,
as an increasingly popular microblog service provider,
already has 127 million active users up to 2012. 54% of
users access Twitter through mobile devices and therefore
grouping as a social sensor network to report what happen
around in real time (e.g., rain, typhoon).

Owing to the real-time feature of Twitter, event detec-
tions by using Twitter messages (tweets) have caught much
attention from recent research studies. Their researches
often focus on the detection of busty feature of the event.
However, real-world events (e.g., rain, snowstorm, and
typhoon) might last for a period of time (e.g., minutes of
an hour, hours of a day). Or it might happen one by one
with a period of time break between them, leading it to
happen sequentially for a period of time (e.g., minutes of
an hour, hours of a day, days of a month). In this paper,
we mainly focus on the duration of detected rain event.

Before travelling to a place, people often would like to
know the weather there (e.g., rain). Unfortunately, most
weather stations only provide weather forecast for cities
or famous scenic spots. There are no weather data for

! Twitter, a social networking service and microblogging service. https:
//twitter.com/

local areas which lie in the city. However, the forecast for
whole city is summarized from different regions. It cannot
reflect regional variation. For example, in a city, it may
rain in some places while it may not rain in other places;
or some places may be located at the boundary between
two cities. It is, therefore, difficult for people to obtain
exact weather conditions for arbitrary places. Fortunately,
data from increasingly popular online social network site
(e.g., Twitter) making it possible to real-time report the
rain event which happened anywhere at any time.

The goal of this paper is to detect the duration of rain
event by using microblogging data (e.g., tweets). In the
literature, several approaches are proposed to detect events
from documents (e.g., the Topic Detection and Tracking
task [1]) or blogs (e.g., Facebook?). However, they might
not be applicable to deal with the detection of the rain
events from microblogs. Microblogs are often shorter than
documents and blogs. Twitter limits to 140 characters for
each post while Facebook accepts up to 60,000 words
and average length of documents in the TREC collec-
tion®. Also, microblog is frequently updated. Therefore,
conventional statistic-based term weighting strategies like
frequency might not reliable in analyzing microblog con-
tents.

A very recent study, a real-time event detection system
is proposed to detect earthquake by using Twitter data.
Similar to their work, Twitter data are also used by us
to detect the duration of rain event. However, features of
rain are quite different from those of earthquake. Thus their
proposed method might not be directly applied to our work.
The differences between the rain and the earthquake are
as follows: 1) the duration of rain event is often much
longer. It is therefore worth studying the duration of rain
event. 2) the influenced regions by rain event are much
irregular while earthquake acts like a ripple, the intensity
is spread out and decreasing from the center of earthquake.
3) the rain event is relatively common and might draw less
attention. There are probably not many posts talking about
the rain event. Thus it could be more difficult to detect the
rain event via tweets than to detect the earthquake event.

This paper presents an online virtual weather station for
detecting the duration of rain event. Given a time and a

2 Facebook, a social networking service owning over 900 million active
users. https://www.facebook.com/

3The Text REtrieval Conference (TREC) is also more than thousands,
yearly workshop providing the infrastructure necessary for large-scale
evaluation of text retrieval methodologies. http:/trec.nist.gov/



location, the system first collects potentially rain-related
tweets that are posted by users near the location. Then
it trains a classifier to filter out those tweets which are
not related to the rain event. The number of the rain-
related tweets in each time slot is counted and these
numbers from all time slots then represent as a time series
data. Aging theory [2] is then combined with wavelet and
threshold methods to detect, respectively, the burst and the
end of the rain event to determine the duration of rain
event. Noted that our method can overcome the problem of
data sparseness and avoid high false alarm or low recall.
Finally, we conduct the experiments on real data, which
are collected from Twitter and 13 U.S. online weather
stations. The experimental results show the feasibility of
the proposed system. Besides, we also investigate how soon
users post tweets when they notice the rain events, and
study whether the way user response to the rain event is
the same to other events.

In the rest of this paper, we first make a brief review on
event detection in Section II, and specify the problem in
Section III. Virtual weather system is proposed in Section
IV. The experiments and discussions are presented in Sec-
tion V. Finally, in Section VI, we present our conclusions.

II. RELATED WORK

With the growth of microblogging, event detection be-
comes more and more popular. Many algorithms have
been performed on various datasets, such as documents,
web pages and microblogs. Conventional event detection
and tracking related researches mainly focus on docu-
ments(e.g., Topic Detection and Tracking [1] and On-
line Event Detection [3] [4]). By single-pass clustering(or
incremental clustering), they calculate the similarity be-
tween the new coming document and existed ones to
determine whether a new event/new branch is generated
or not. Unfortunately, such clustering method can not be
transplanted to the microblogging data directly. Unlike
normal documents(e.g. web pages and blog articles), which
contain hundreds to thousands or even more of words, the
length of a post in microblogs is often much shorter,(e.g.
One tweet contains 140 words at most on Twitter). It
is, therefore, difficult to precisely estimate the similarity
among these short documents, resulting in the failure of
such method. Therefore, finding the boundaries of events
is an important issue. Furthermore, we cannot expect that
there are many event related documents or tweets all the
time, especially when event goes on for a while. It makes
the problem become harder.

In microblog, because of the short text characteristic,
users usually use more precise words to convey their
thoughts [5] . Therefore, we can detect events in the respect
of words by monitoring their usages. [6] utilizes Twitter
data to detect and locate earthquake in Japan by proposing
a probability-based approach. [7] adopts aging theory to
detect emerging terms, then groups these terms to a topic.
Other than microblog, researchers also apply similar idea

to detect events on short text. For instance, [8] analyzes
Yahoo!* query log for tracing the trojectory of a storm.

Except of directly doing event detection in time do-
main, some researchers also analyze the time series data
in frequency domain. [9] collects 806,791 English news
stories and analyzes all words both in time and frequency
domains by Fourier transform. It then divides the detected
event into important/minor and period/aperiod classes. In
[10] and [11], the words of tweets on Twitter or tags of
photos on Flickr are considered as the source of energy.
The events are detected by using the wavelet transform
to analyze the energy distribution. Although such methods
can do well on signals changing suddenly (which often
represents something happens); however, for the rain event,
it only works partially, since we need not only detect the
beginning of rain but also ending point, which usually has
no obvious variation.

Although there are many existing researches making
effort on event detection, all of above do not focus on event
duration detection. Moreover, because rain is a minor and
usual event, such characteristic makes this task become
harder.

III. PROBLEM SPECIFICATION

Each Twitter user’s post is called a “tweet”. We define
a tweet T; as a S-tuple T; = {C(T3), U(T3), lo(Ty),
la(T;), t(T;)}, where C(T;) and U(T;) are the content
and publisher of tweet T;. lo(T;) and la(T;) represent the
longitude and latitude of the location where tweet T; is
posted, respectively. ¢(7T;) denotes the published time.

Given a time ¢t and a location (specified by lon-
gitude = and latitude y), we’d like to build a vir-
tual weather station W;, which is defined as W; =
{lo(W;),la(W;), E(W;,t)}, where lo(W;) and la(WV;)
stand for the longitude and latitude of station W}, respec-
tively. lo(W;)=x and la(W;)=y. E(W;,t) indicates the
weather condition in location (z,y) at time ¢t. E(W,,t) =1
if it is raining; otherwise, E(W;,t) = 0.

More specifically, suppose function dist(T;, W;) gives
the distance (varied from O to 1) between tweet T; and
station W; based on their longitudes and latitudes. For vir-
tual weather station W}, our problem is how to effectively
estimate E(W;,t) by the tweets { T; }, where t(T;) <t
and dist(T;,W;) < 4. § is a given threshold.

IV. THE VIRTUAL WEATHER SYSTEM

The system contains two primary stages:* “Tweets Filter-
ing” and “Event Detection”, as shown in Figure.l. In the
first stage, we try to find out the tweets { T; } actually
related to the rain event from all potential tweets (i.e.,
dist(T;,W;) < 6 and ¢(T;) < t) according to C(T;) and
U(T;). In the second stage, we transform the numbers of
the collected rain-related tweets into energy domain and
then try to model the life cycle of a rain event to estimate
E(Wj,t) based on the concept of aging theory [2].

4Yahoo!, http://www.yahoo.com/
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Figure 1. The flowchart of the system

IV-1. TWEETS FILTERING

In this stage, we want to exclude the tweets which are not
“rain-related” to make our detection system more robust.
The tweets fed to the system are simply classified as two
classes, “rain-related” and “not rain-related”.

We propose a method to find out the tweets discussing
about the “rain” events. The method first applies heuristic
rules to filter out those tweets not containing predefined
rain-related keywords. But rain-related words might have
multiple meanings in the natural language. For example,
there is a song “Rain” recorded by the famous band
“Beatles”. Moreover, it is not necessary that the time a
user talking about rain will be the time the rain happens.
For example, people may post some tweets like “it’s
about to rain” or “the rain last night made me annoyed”.
Although such tweets are truly concerned about rain, for
our application they still need to be considered as noises.

Considering the above factors, we find it essential to
filter out the noises. Otherwise, we may make false alarms
easily. Our filtering method, therefore, adopt Support Vec-
tor Machine (SVM) [12] as a classifier to classify tweets
into “rain-related” and “non-rain-related” sets. We consider
SVM because it is a discriminative model producing supe-
rior classification performance in many case.

For each tweet T;, we extract text features from its
text space C(7;) and author features from its author
space U(T;). Text features can be divided into statistical
features and semantic features. Statical features capture
the statistical information of a tweet, including the length
of the tweets, the frequencies and positions of predefined
rain-related keywords ‘“rain” and ‘“raining”, respectively
semantic features are the top 4000 content words chosen
by x? statistic [13] from the training data. Author features
keep the statistical information about a user, includeing

the total number of tweets she posts, number of tweets
she posts during the rain events and number of tweets she
posts containing keywords “rain” and “raining”. The author
features are supposed helpful if there are some users worth
trusting.

IV-II. EVENT DETECTION AND MODELLING

In this stage, we use the cleaned data obtained from
previous stage and then calculate the number of tweets
along time for representing a time series data. To estimate
E(W;,t) for each weather station W at time t, we apply
the concept of aging theory introduced by [2] to model the
life cycle of a rain event, making it possible to determine
event boundaries.

A. Energy Transformation

Aging theory considers an object as an organism. By
taking the suitable resources as nutrition, the object obtains
the energy it needs to develop. With the variation of the
energy, the object goes through the four statuses of birth,
growth, decay and finally die. In this paper, we consider
rain events as our organisms and take rain-related tweets
as clues for detect the event. When it starts to rain, people
may be interested in the event. As time goes by, they are
gradually used to the event and don’t pay attention to it.
Such phenomenon implies that the energy of rain event
changes by time and we therefore use aging theory to
model the process.

1) Nutrition: One possible way to calculate nutrition
for a given time stamp is treat every tweet as identical
and use the number of tweet as nutrition, but there is still
much information worth to be considered. Actually, not
every tweet related to rain is helpful. For instance, one
user talking about rain in Los angles has little chance to
be concerned with rain in New York, since twitter user
tends to post what happens beside them. Therefore, it is
essential to give different weight for the relevant tweets.

Different tweets T} contribute nutrition at different lev-
els. So they should be assigned different weights according
to their attributes. For each tweet T;, we define the weight
of T; as P(E(Wj,t) = 1| T;), which can be extended by
the Bayesian theorem as follow:

P(Ti | EWj,t) = D) P(E(W;,t) = 1)

P(E(W,,t) =1|T;) = BT

>

where three items need to be approximated. P(7; |
E(W;,t) = 1) models relationship between rain-related
tweet 7; and rain event E(W;,t). P(E(W;,t) = 1)
denotes the prior probability of the rain event happening
in station W; at time ¢, and P(T;) implies the prior
probability of tweet T; being posted.

P(T;|E(W;,t) = 1) : The item represents the prob-
ability of tweet T; being posted given that it is raining
in station W; at time ?. To estimate it, we assume that
such probability is related to the distance between tweet
T; and station W;. As [14] finds that frequency distri-
bution of users varies as a power of their distances to



an event center, such distribution follows a power law.
We, therefore, define a function dist(T;, W;)*, a < 0 for
estimating the probability. The function is proportional to
the probability density function of power-law distribution.
When « is equal to zero, tweets T; are viewed as identical.
Lower o emphasizes the importance of distance and can
narrow down the scope of nearby regions.

P(E(W;,t) = 1) : On the basis of meteorological
knowledge, the weather condition of a region varies by
season. The probability can be estimated by training data.
However, as in the experiments our 3-month training data
is too small to approximate the factor, we assume it is
uniformly distributed and can be ignored.

P(T;) : P(T;) is related to temporal factor. From the
Figure 2(a), we find that the amount of the tweets posted
in daytime is greater than that at midnight. To address these
issues, we make use of the number of tweet T; posted at
around time ¢(7;). Note the number of rain-related twitters
T; posted over time is quite different from the number
of whole tweets posted over time (We will explain the
details in Section V.C). In our system, for each tweet Tj,
P(T;) is attached a temporal weight tmp(T;), which is the
number of twitters T; posted at around time ¢(7;). We learn
tmp(T;) from training data.
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Figure 2. Tweet distribution of Twitter

By combining all the factors mentioned above; we define
the weight of tweet T; for station W; as follow:

(dist(T;, W;)) + 1)~
tmp(T5;)

weight(T;) =

and nutrition in time ¢j is calculated as
Z weight (T,

2) Energy: We define that energy as the expected value
of nutrition. A tweet is effective not merely at the time it
is posted, its effect should last for a while and decrease by
time. Nutrition is similar. We assume that probability of nu-
trition becoming out of date in every time slot is uniformly
distributed. Consequently the probability of nutrition that
is still effective can be modelled by a exponential function.
Based on this assumption, we derive our energy function
as following and set 3 as 0.85

Nutrition(t) , for each T;,t(T;) = tx

Energy(ty) = B x Energy(ty — 1) + Nutrition(ty)

Aging theory based Model

Now we have the energy distribution over the whole time
line. The time slot size is set to be 1 hour.
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time Time(0.5hr)

(a) Four statuses of Aging theory (b) Energy distribution from Nov
2011 to Nov 29 2011 in station
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Figure 3. The four statuses of energy in Aging theory

From Figure 3(b), we find that under normal circum-
stance, energy is relatively low and smooth. The occurrence
of an event will break the regularity. As a result, by captur-
ing the rigid change, we are able to catch the beginning of
the event. We define such change point as the birth status
of the event.

To detect boundaries, we apply wavelet transform on
the time series energy data. Wavelet transform is one
popular way for variation detection. It transforms the signal
from time domain into frequency domain through a multi-
resolution way. We choose the Daubechies wavelet [15]
in our model because it can be applied on length-limited
and discrete signal easily. We adopt the idea of H-measure
proposed by [10] to calculate the energy entropy. As
the following formula shows, for a signal s, H-measure
calculates the energy in different resolutions (Eresotution; )s
calculates their entropy (the numerator), and finally nor-
malizes by maximum possible entropy (Entropymaz)-

Eresolution il Eresolution;

-2

Etotal Eiotal

H
() = Entropymax

Then as Figure 4 shows, we calculate the H-measure
for each of the two time windows, and compute
max(%jlwm). If there is something happening,
H-measure of small window turns into large while the large
one remains relative small. We get a larger value. However,
the signal bursts not only when energy is in increasing
phrase but also sometimes in decreasing phrase. To solve
the problem, we compare the original energy between the
two time windows to filter out the burstiness in decreasing

phrase.

current time
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Figure 4. Illustrate for beginning detection



When one event occurs, it’s nearly impossible for the
energy to reach a maximum immediately. People requires
some time to make responses. We consider such period,
which keeps getting energy, as the growth status. In our
model, events in this status will never be declared death.

After reaching the maximum of energy, the event enters
the decay status and energy starts to decrease. For a minor
event, the energy curve is often not smooth due to the data
sparseness problem. Therefore we assume energy declines
in an exponential way in this status. By the technique of
exponential regression, we can solve an optimal function
that fits the data best in the decay status. The optimal
function is updated when new data comes ( Figure 3(a)).
At first time, we have only one point so there is nothing
to learn, but in the next time slot, we have two points and
the first version of the optimal function can be solved out.
In the following n-steps in the decay status, we do the
similar thing. The expected energy is returned from the
optimal function. Differing from using the original energy,
using the expected energy has additional benefits: Time
factor is considered implicitly. Because the expected energy
can be used to predict the missing signal due to the data
sparseness problem. Moreover, because the exponential
function decreases very fast, it can also fit dramatically-
decreasing signal well.

The situation discussed above is an ideal case; however,
in practice the energy signal seldom monotonically de-
creases. Most of the time energy signal goes up and down.
Sometimes it even bursts again which might be caused by a
new event. To distinguish the old event and the new event,
we apply wavelet model here again. Once a significant
change is found, we say that the current event is death
and a new event is created; otherwise, the decay status
will continue.

Once rain stops, the energy signal should return to a
low and stable level, leading to the ending of the event.
As Figure 3(b) shows, the change of energy in this status
isn’t as dramatic as that in the beginning, resulting in
wavelets transform is not a good option for boundary
identification here. Hence we propose a threshold-based
method to determine the death of an event. To decide the
threshold automatically, we assume that most of the energy
is converged on the duration of the event, and energy that
appears outside of the event is lower than energy inside
the event. By predefining a pair of lower bound and upper
bound (in this work we assume 70% energy is in the event
so we set (Ib,up) = (0.65,0.75)), the threshold can be
determined accordingly. The details of how we determine
threshold are shown in Algorithm 2, and the overview of
aging theory based model is displayed in Algorithm 1.

V. EXPERIMENTS

In this section, we first evaluate the performance of
our model, including filtering, and raining detection, then
analyze the influences of temporal factor. Finally, we do a
user behavior analysis.

Algorithm 1 detectionModel(energy)

status <— NULL
peak <+ NULL
for t=0— T do
if isChangePoint(energy(t]) then
status <— BIRTH
status < GROWTH
else if status = GROWTHNisMax(energy[t]) then
status «<— DECAY
peak <t
else if status = DECAY then
lambda < ExpRegression(energy[peak : t])
if newFEnergy(lambda,t,peak) < threshold
then
status <— DEATH
end if
end if
end for

Algorithm 2 getThreshold(energy, Ib, ub)

energy < sortHightoLow(energy)
total Energy < sum(energy)
cumulateEnergy < 0
for i = 0 — length(energy) do
cumulate Energy < cumulateEnergy + energy|i]

e cumulateEnergy
if “HotalBnergy < [b then
low <1

else if cwmulateEnergy < ub then
total Energy

up 1
end if
end for
threshold = mean(energyllow : upl)

We use Twitter Stream API® to receive all public tweets
real-time, such that we can simulate a on-line microblog-
ging system with geographic information.

A. Evaluation of Filtering

In the filtering stage, we use the package LIBSVM [16]
to train a SVM model with radial basis function(RBF)
kernel. To ensure the good performance, we scale the
features of training data into the range from O to 1, and do
same operation on the testing data. Then we compare it to
the results without scaling.

For the training step in the filtering stage, we totally
label 6,320 tweets from Aug. 2012 to Sep. 2012 that
contain “rain” or “raining”. 2,797 tweets are related to the
rain event; the remainders are not related but containing
the keywords. We combine different features, including
statistical, semantic and author features to train each model
separately and do 5-fold cross validation to evaluate with
measures of precision, recall and FI1-Score.

From Table.l, we can see that the scaling preprocessing
makes a great improvement in SVM with RBF kernel.
For the feature selection, semantic features are the most
effective. Although author features provide the best per-
formance in recall, it performs the worst in precision.
Such features generate too many false positives and do

Shttps://dev.twitter.com/docs/streaming-api



without scaling with scaling

Feature Set | Precision  Recall  FI-Score | Precision Recall — FI-Score
A 0.7041 0.8520 0.7710 0.7559 0.8056 0.7799
B 0.5833 0.6483 0.6141 0.5837 0.6455 0.6130
C 0.4721 0.9442 0.6295 0.4767 0.9378 0.6321
A+B 0.7560 0.7841 0.7698 0.7910 0.8063 0.7986
A+C 0.7252 0.8120 0.7661 0.7531 0.8077 0.7794
B+ C 0.6187 0.6594 0.6384 0.6269 0.6312 0.6290
A+B+C 0.7500 0.7806 0.7650 0.7940 0.8031 0.7985

Table 1

PERFORMANCE OF FILTERING, A MEANS SEMANTIC FEATURES, B MEANS STATISTICAL FEATURES, C MEANS AUTHOR FEATURES

the number of alarmed time slots with weather raining

Precision = -
the number of alarmed time slots

the number of alarmed time slots with weather raining

Recall = - - —
the number of time slots with weather raining
2 X Precision X Recall
FI-Score =
Precision + Recall
the number of time slots with correct prediction
Accuracy = :
the number of all time slots
Figure 5. Four measures in evaluation of event detection

not benefit the performance when combined with others.
Finally, we use statistical and semantic features to build
the final classification model.

B. Evaluation of Event Detection

To evaluate the performance of the proposed event de-
tection method, a baseline method is built up. The baseline
method simply judges E(W;,t) as 1 if the number of
the rain-related tweets posted at the time slot ¢ is greater
than a threshold, determined by Algorithm 2. Noted that
such method is equal to do event detection on each time
slot. We further implement a wavelet-based method [10]
for comparison. This is because wavelet filtering is quite
sensitive to signal changes, which often happen at the
boundaries of events such as beginning and ending. The
time slots between a boundary are labelled “raining”.

We select thirteen weather stations in U.S. and treat
the weather condition they post as ground truth. For each
station, we crawl all the tweets around it from Nov. 01,
2011 to Jan. 31, 2012 (3 months). Table.IV summarizes
their statistics. Evaluation is done by 3-fold cross validation
with time slots set to be one hour. The performance is
measured by four measures - precision, recall, FI-score,
and accuracy. Precision here is defined as the number
of the time slots in which our method and ground truth
both agree “it is raining” divided by that only our method
alarms. The other measures are also defined in Figure 5.

Table II shows the results in terms of the four metrics.
Various settings of the proposed method are taken into
account. “RAW” means the method counts all the tweets
containing “rain” or “raining” in. The method denoted
by “SVM” further performs tweet filtering, i.e., the first
stage. “T” represents the temporal weight. Each method

baseline  wavelet base  raw data SVM T+SVM

precision 0.4972 0.2010 0.4764 0.5610 0.5528

recall 0.6253 0.6708 0.7196 0.7102 0.7254

F1-Score 0.5539 0.3093 0.5732 0.6268 0.6274

Accuracy 0.9299 0.7997 0.9226 0.9432 0.9424
Table 1T

PERFORMANCE OF DETECTION MODEL. T MEANS TEMPORAL WEIGHT.
TOO LITTLE SENSOR STATION(4,5,9) ARE NOT USED TO COMPARE IN
THIS TABLE

may combine different settings. From Table II, we find
the wavelet-based method produces lower precision, even
compared with the baseline. This is because such method
is not suitable for detecting the ending of a rain event,
where the signal is not always changed abruptly. Twitter
filtering really reduces noisy input signals and is helpful
in precision. But it could hurt recall to some extent. Con-
sider F1-score, which puts balanced emphasis on precision
and recall. The proposed method under different settings
performs much better than the baseline and wavelet-based
methods. Some improvements will be gained when certain
factors or weights are considered. In our method with dif-
ferent setting, recall is much higher than precision because
our method not only produces high energy during the rain
events but increases the energy of the time slots that are
adjacent to the rain events. Accuracy is quite high in the
results. Actually, most of the time it doesn’t rain near the
thirteen weather stations.

We adjust the time slot size to see how the parameter
affect final performance. The tendency in precision and
recall are plotted in Figure 7. Smaller time slot size brings
higher recall and lower precision. When enlarging time slot
size, we probably collect more rain-related tweets in each
time slot, leading to more reliable signals; however, it may
make the signal changes not obvious at the boundaries so
recall will decrease. We also examine how the performance
varies when we change the /3 of energy function in Figure
6. When increasing the (3, we get the higher performance
since the problem of data sparse is improved. However,
when (3 is larger than 0.8, the performance drop rapidly. It
is because that too many false alarms are created.

Our system is not always feasible for every station, as
shown in Table III. Take the third weather station as an
example, where the population centralizes in certain sub-
regions (See Figure 2(b)). Unbalanced energy distribution
cannot actually reflect the weather condition in the centroid



station id | 1 2 3 4 5 6 7 8 9 10 11 12 13
F1-score 0.6602  0.7351 0.2100 0.0513 0.3259 0.6703 0.5062 0.5664 0.0746 0.7368  0.7493  0.6399  0.5857
Table III
PERFORMANCE OF EACH STATION
station ID | #(Tweets) | Tweets containing | Alarmed | tweet/dayx1000 | population distribution | raining | daytime raining | night raining
“rain” or “raining” Tweets entropy hours hours hours
0 3,246,499 3,298 1,720 11.5845 0.7794 62.00 44.25 17.75
1 4,275,156 3,983 2,083 11.0174 0.7369 104.50 84.50 20.00
2 4,385,449 4,228 2,243 11.9762 0.6739 52.00 40.25 11.75
3 1,113,344 883 550 2.5402 0.8909 35.50 28.00 7.50
4 1,083,468 849 518 24717 0.9122 31.50 23.25 8.25
5 2,810,782 4,034 2,675 7.4618 0.9061 66.25 46.50 19.75
6 1,201,155 2,023 1,164 3.1549 0.5387 79.50 4475 34.75
7 2,202,675 2,624 1,005 5.4941 0.7983 137.50 82.25 55.25
8 512,707 1,311 503 1.5720 0.7774 23.50 12.50 11.00
9 1,168,641 1,297 607 3.0482 0.8014 120.75 82.25 38.50
10 2,504,224 2,685 1,824 6.2464 0.8719 189.25 130.00 59.25
11 760,016 1,572 649 2.5543 0.8818 126.75 79.00 47.75
12 1,817,031 3,919 2,013 4.5148 0.9136 89.00 50.00 39.00
Table IV
STATISTICAL DATA OF WEATHER STATIONS
0.7 ' ' ' ' First, we collect 22 rain events that last at least five hours
@ 0651 . from all the weather stations and calculate their energy
b= . . . . .
S sl B//&E‘g | distribution over time. Figure 8(a) shows the results, by
‘_"? - \ which we find 18.1% of energy appears before the rain
4= 0_55[;; g g —= \ | events; that is, some rain-related tweets are posted earlier
s 03 o 0% 03 S than .the even.ts. 74.6% Qf energy converges on the durat?on
R of rain; that is, most rain-related tweets are posted during

Figure 6. Influence of

of a region, leading Fl-score in this station to 0.25. On
the other hand, our performance is affected by the number
of Twitter users. Since we view them as social sensors,
sufficient number of the users is essential for our system.
The top 3 stations with most rain-related tweets can reach
0.7351, 0.7493, and 0.6602 in F1-score, respectively, while
the last 3 only 0.3259, 0.0746, and 0.0513.
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Figure 7. Influence of size of time slot

C. User Behavior Analysis on Rain Events

Here we want to (1) realize when the Twitter users post
weather information on Twitter once the rain events get
their attention and (2) study how the temporal factor affect
the user behavior, i.e., sharing weather information with
others.

the events. 7.3% appears after the events. Figure 8(a) shows
such distribution. Energy reaches a maximum at the first
30% of the time. Figure 8(b) shows cumulative energy
distribution. 80% of energy is cumulated before the 60%
of the time in average. The energy distribution observed
is roughly similar to what we imagine and meets the
assumption of the aging theory. As rain is affected by many
factors such as terrain and wind direction, if it doesn’t rain
in one region but rains in its nearby regions, we probably
receive event signals before the rain event actually happens
in the region. That’s why 18.1% of energy appears earlier.

Second, we compare the normalized numbers of total
tweets with those of rain-related tweets posted over 24
hours, as shown in Figure 9, where 3-month tweets are
collected from 13 weather stations and the average numbers
are both smoothed and normalized between 0 and 1.
We find that the two curves look similar except time
difference. People post weather information earlier than
other information in the morning. This might be because
they are more concerned about weather condition in the
daytime. Interestedly, the total number of tweets grows
in the evening and reaches the maximum at midnight;
however, people pay less and less attention to weather
condition from 6:00 pm. Based on this observation, we
find that whether a user posts weather condition is related
to the time she makes a post and is not proportional to the
total number of the tweets.
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happens. We also find that users get different attention at
different time.
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