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Introduction
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Online Streaming Services

Online streaming services are popular nowadays. ]
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However, they might not be free.

@ Membership is usually not free.

Spotify charges $9.99 per month
Netflix charges $7.99 per month
Hulu charges $7.99 per month
Amazon charges $99 per year

@ Tendency to save money by sharing accounts

Some users may choose to share one account! J
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Account sharing can be a serious issue!

Lost Revenue Personalized Recommenders
@ When n users share an @ Transactions of an account are a
account, n — 1 fees are lost. mixture of multi-user activities.
@ Policy violation @ Unsatisfactory recommendations
?2 ?2 2?2?27
Identifying users behind shared accounts is important! J
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In this work, we exploit meta information of items to identify users. )
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Problem Definition

Given an account and its existing sessions, there are two goals. J
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Problem Definition

Given an account and its existing sessions, there are two goals. )

Goal 2: Identifying Users for New Sessions (Ul-New)

@ Identify the user using only a few preceding items of a new session
e so that the we can identify the user as early as possible.

User 1 User 2

New Incoming Session
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Framework Overview of SHE-UI

Session-based Heterogeneous graph Embedding for User Identification(SHE-UI) )

1. Heterogeneous 2. Graph and Session 3. User Identification
Graph Construction Embedding by Clustering
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For Ul-Past (existing sessions) For Ul-New (new sessions)

Treat each cluster as a user Find the closest cluster
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Heterogeneous Graph Construction

@ Items and their meta information can be represented by nodes.
@ Relationships among items and meta are represented by edges.
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Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)
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Graph and Session Embedding

@ Random walks are commonly utilized for node embedding.

@ However, their popularity has a large variance.
e i.e., some items will be over-optimized.
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Normalized Random Walk for Node Embedding

@ Normalize probabilities with node degrees
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Normalized Random Walk for Node Embedding

@ Normalize probabilities with node degrees

P(wj=q; |wj-1=p)

=0.24

Skip-gram architectures such as DeepWalk can then be applied to learn
node embeddings. J
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ltem-based Session Embedding

@ Session embedding can be computed by aggregating item embeddings.
@ But repeated items in a session may cause issues.
e 100 play counts v.s. 20 play counts, 1 play count v.s. 2 play counts
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Occurrence-Preference Assumption (Gopalan et al., NIPS'14)

The item occurrences is proportional to the square of the preference score.

@ The features of the session s can be computed as:

f(s)= Z\/ s, i) - f(i

IEU (s) S I iceU(s)

We then cluster the sessions in the item-based session embedding space. )
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Experiments
°

Experimental Settings

@ Two datasets

o Real-world KKBOX dataset
e Synthetic Last.fm dataset

@ Segment logs into sessions with a 30-minute threshold

@ Remove inactive accounts and short sessions

(a) Session Information (b) metadata
Last.fm KKBOX Last.fm
edISting 509313 10,783,556 | | 2tists 60,410
sessions KKBOX
new sessions 209,925 10,782,507 artists 43,157
accounts 370 88,399 albums 253,896
unique users 922 343,723 published years 77
items 314763 564,164 | | genres 48
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Experiments
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Baseline Methods of User Identification

Item-based Clustering (Items as features)
o K-Means++ (KM)
@ Subspace Clustering (SS)
o Affinity Propagation (AP)

Embedding-based Clustering (Embedding as features)
e word2vec (W2V)
o LINE

o DeepWalk (DW)
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Experiments
oe

Identification Performance

Synthetic Last.fm Real Data from KKBOX
Ul-Past \ Ul-New Ul-Past \ Ul-New
Metric NMI MAF MIF ‘ NMI MAF MIF NMI MAF MIF ‘ NMI MAF MIF
Known Numbers of Users
KM 0.2956  0.6109 0.7400 | 0.2802 0.6106 0.7400 | 0.3640 0.5710 0.6516 | 0.3286 0.5644 0.6592
SS 0.2954 0.6109 0.7405 | 0.2793 0.6105 0.7403 || 0.3627 0.5707 0.6612 | 0.3258 0.5642 0.6585
wav 0.4865 0.7022 0.7982 | 0.4428 0.6823 0.7769 | 0.3828 0.5855 0.6524 | 0.3571 0.5739 0.6488
LINE 0.2667 0.5611 0.6544 | 0.2622 0.5724 0.6768 | 0.3830 0.5874 0.6463 | 0.3456 0.5634 0.6183
DW 0.5597 0.7372 0.8162 | 0.5148 0.7161 0.7947 | 0.3995 0.5976 0.6656 | 0.3587 0.5775 0.6419
SHE-UI || 0.6108 0.7613 0.8393 | 0.5718 0.7455 0.8236 | 0.4281 0.6111 0.6804 | 0.3880 0.5948 0.6625
Unknown Numbers of Users
AP 0.1677 0.3413 0.3474 | 0.1546 0.4825 0.5408 | 0.1884 0.4828 0.4978 | 0.1783 0.5225 0.5569
KM 0.1189 0.5842 0.7003 | 0.1061 0.5622 0.6697 | 0.1856 0.5264 0.5849 | 0.1516 0.5041 0.5642
SS 0.1518 0.5838 0.6856 | 0.1312 0.5616 0.6582 || 0.1927 0.5312 0.5904 | 0.1841 0.5151 0.5851
wav 0.2981 0.6413 0.6587 | 0.2560 0.6148 0.6347 | 0.2081 0.5337 0.6025 | 0.1807 0.5149 0.5818
LINE 0.0813 0.5641 0.6687 | 0.0964 0.5546 0.6552 | 0.1955 0.5365 0.6083 | 0.1010 0.4782 0.5394
DW 0.3053 0.6286 0.6557 | 0.2669 0.5966 0.6244 | 0.2158 0.5508 0.6249 | 0.1941 0.5322 0.6024
SHE-UI || 0.3375 0.6563 0.6782 | 0.3214 0.6323 0.6568 | 0.2426 0.5610 0.6309 | 0.2218 0.5451 0.6117

Dataset
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Application: User-level Recommendation

@ Traditional systems can only provide account-level recommendation
o Represented as Za(a, i) for the account a and the item i
@ With user identification, user-level recommendation is available.

o Separately trained for each individual user
o Denoted as Zy(a, i)

@ Two models can further be combined for better performance.
ZC(37 u, I) = (]' - Oé) : Z7/‘\(‘37 I) +a- Z7U(uu I)?

@ « is the parameter to control the weights of two systems.
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User-level Recommendation

Baseline Methods

Most Popular Recommendation (PopRec)

Maximum Margin Matrix Factorization (MMMF)

Bayesian Personalized Ranking Matrix Factorization (BPRMF)
Collaborative Less-is-More Filtering (CLiMF)

| A\

Evaluation Method

@ Rank all items and consider occurred items as relevant instances for
each testing session.

@ Sparse and pretty difficult

N

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 15 / 17



Experiments
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Performance of User-level Recommendation

Our approach is combined with BPRMF. )

PopRec

MMMF BPRMF CLiMF

Ours (o = 0.6)

MRR
MAP
Po1

0.1242
0.0317
0.0597

0.1421  0.1353  0.1400
0.0331  0.0330 0.0337
0.0608  0.0577  0.0597

0.1727 (+23.30%)
0.0439 (+30.03%)
0.0846 (+41.88%)
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Thanks for your attention! Questions? |
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