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ABSTRACT
Online streaming services are prevalent. Major service providers,
such as Netflix (for movies) and Spotify (for music), usually have
a large customer base. More often than not, users may share an
account. This has attracted increasing attention recently, as account
sharing not only compromises the service provider’s financial inter-
ests but also impairs the performance of recommendation systems
and consequently the quality of service provided to the users.

To address this issue, this paper focuses on the problem of user
identification in shared accounts. Our goal is three-fold: (1) Given
an account, along with its historical session logs, we identify a set
of users who share such account; (2) Given a new session issued
by an account, we find the corresponding user among the identi-
fied users of such account; (3) We aim to boost the performance of
item recommendation by user identification. While the mapping be-
tween users and accounts is unknown, we propose an unsupervised
learning-based framework, Session-based Heterogeneous graph Em-
bedding for User Identification (SHE-UI), to differentiate and model
the preferences of users in an account, and to group sessions by
these users. In SHE-UI, a heterogeneous graph is constructed to
represent items such as songs and their available metadata such
as artists, genres, and albums. An item-based session embedding
technique is proposed using a normalized random walk in the het-
erogeneous graph. Our experiments conducted on two large-scale
music streaming datasets, Last.fm and KKBOX, show that SHE-UI
not only accurately identifies users, but also significantly improves
the performance of item recommendation over the state-of-the-art
methods.
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1 INTRODUCTION
Online streaming services, such as Netflix1 and Spotify2, have be-
come popular and accumulated massive user bases. Premium users
have the privileges to enjoy high-quality contents and real-time
streaming events, but these services usually come at a fee. Be-
cause of the membership fee of the premium accounts, it is not
rare that users share a premium account to split the cost between
themselves. However, illegal sharing may compromise not only the
service provider’s financial interests but also the service quality in
general. First, account sharing implies loss of potential customers
who may bring additional revenue to the service provider. Second,
current customer profiling and recommendation systems operate
under the assumption that each account is used by a single user and
hence cannot accurately model individual user preferences from a
mixture of activities by multiple users. This may impair its ability
to provide high quality recommendations to users. Consequently,
unsatisfied users may decide to switch to other providers.

To detect account sharing and enhance the quality of recom-
mender systems in the presence of account sharing, this paper aims
to identify individual users behind shared accounts. The goal of our
work is three-fold. First, given a list of registered accounts, along
with the corresponding session logs that record the activities of the
accounts, we aim to accurately identify the set of users behind each
account based on its session activities from the set of users who are
using this account. Then we can accordingly predict whether an
account is shared by multiple users. Second, given a newly-coming
session issued by a certain account, we aim to identify the corre-
sponding user from the identified users of that account. Third, we
will enhance the performance of item recommendation by integrat-
ing account-level and user-level item recommendation. The session
log of an account contains lists of entries. Each entry records the
item requested and the timestamp of such request. We organize the
log of each account into a list of consecutive sessions. In addition,
each item may be associated with several metadata attributes (e.g.,
a song may have genres, artists, albums, and published years).

1Netflix: https://www.netflix.com/
2Spotify: https://www.spotify.com/
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It has been shown in the literature that modeling multi-user
behaviors in shared accounts [1, 37, 38, 42, 44] and session-based
recommendations [19, 36] successfully improve the performance
of item recommendation. However, these studies do not attempt
to identify individual users. To the best of our knowledge, Zhang
et al. [43] is the first and only attempt to identify users in shared
accounts by a specialized subspace clustering, which is employed as
a baseline in our experimental studies. In addition, the information
of metadata is not taken into account in their approach.

Since we do not know the accounts that may be shared by multi-
ple users and the users that share the same account, we propose an
unsupervised learning-based framework, Session-based Heteroge-
neous graph Embedding for User Identification (SHE-UI). The main
idea is to model the preference of individual users via a novel tech-
nique of session embedding that learns a unique feature representa-
tion for each session. We first create a heterogeneous information
network to represent the relationships among items and their meta
information. Then, by applying a specialized random walk mecha-
nism, the feature representation of each node can be derived using
the skip-gram learning architecture [25, 27]. Subsequently the item-
based session embedding is learned through the node embedding.
For each account, the user identification problem is then mapped to
the problem of session clustering.We develop a clustering algorithm
based on Affinity Propagation [15] to simultaneously determine the
number of clusters and group sessions into clusters. Each cluster
represents the sessions issued by the same user, and the number of
clusters represents the number of users sharing this account. For
any incoming session of this account, we may find the potential
user who issues the session by computing its representation (from
the first few items in the session) in the space of session embedding
and finding its nearest cluster. Last, to boost the performance of
recommender systems, we propose a hybrid recommender, termed
AURec, which combines conventional account-level and user-level
(derived by SHE-UI) item recommendation.

We summarize the contributions of this work in the following.

• We propose to deal with two research tasks: (1) identifying users
behind a shared account based on historical sessions and meta-
data of the items, and (2) given a new session initiated by a
multi-user account, identifying which user issued this session.
The former can benefit the service provider to detect multi-user
accounts so that new pricing strategies can be established, while
the latter boosts the performance of item recommendation. It
is also worth mentioning that no prior knowledge about the
mappings between users and accounts are given here.

• We develop an unsupervised framework SHE-UI that cannot only
identify users in shared accounts, but also learn the preferences
of individual users. Through a novel session embedding tech-
nique, SHE-UI effectively learns feature representations from a
heterogeneous graph that represents the relationships between
items and their metadata.

• Experiments conducted on two large-scale datasets of online
streaming services, Last.fm and KKBOX, demonstrate that SHE-
UI clearly outperforms existing item-based and embedding-based
methods on both tasks of user identification. A study of parameter
sensitivity also manifests the robustness of SHE-UI.

• Based on the identified users behind accounts, we devise a hybrid
recommender AURec that combines account-level and user-level

Table 1: Comparison of relevant studies. Note that “User
Identification” indicates whether users behind shared ac-
counts are explicitly identified. The “Items” field shows the
types of items that are considered, “metadata” indicates
whether meta information about items is modeled, and
“Recommend” shows whether the goal of a study is to im-
prove the performance of recommendations.

User Identification Items Metadata Recommend
Wang et al. [38] IPTV

√

Yang et al. [42] IPTV
√ √

Verstrepen et. al. [37] Movie
√

Zhao et al. [44] Ticket
√

Zhang el al. [43]
√

Movie
√

Aharon et al. [1] TV
√

Bajaj et al. [5] TV
√

Our work
√

Music
√ √

item recommendation. Experiments on KKBOX data show that
AURec is able to significantly outperform the state-of-the-art
account-level recommendation methods by 39% in terms of Pre-
cision@1.
The remainder of this paper is organized as follows. After pre-

senting the relevant work in Section 2, we present the problem
statement in Section 3. The proposed methodology is described
in Section 4. We show the experimental results in Section 5, and
conclude this work in Section 6.

2 RELATEDWORK
2.1 Modeling User Preferences in Shared

Accounts
Several studies have attempted to model user behaviors from ses-
sion logs [1, 5, 37, 38, 42, 44]. They improve the performance of item
recommendation according to the (latent) preferences of individual
users. Diverse types of items have been investigated, including
TV [1, 38, 42], movie [37, 43], and flight ticket [44]. The common
approach to model user preferences is to de-convolute a high di-
mensional feature space that characterizes the relationships among
accounts, items, and time [38, 42]. Techniques, such as subspace
clustering [43], graph partition [38], collaborative filtering [37],
topic model [44], and latent factor model with LDA [5], are used to
obtain latent features so that the user preferences can be captured.
Although the performance of the recommender systems can be
improved, these studies assume each account is associated with
one user and thus do not distinguish individual users sharing an
account. We argue that identifying individual users can bring addi-
tional values, as it allows for recovering lost revenue, better targeted
marketing, designing new service plans, among many other useful
applications. In addition, a sequence of items from a user can be
regarded as a Markov process, so modeling interleaved Markov pro-
cesses [24] can be also treated as a related work. Table 1 summarizes
the comparison between our work and previous studies.

2.2 User Identification
To the best of our knowledge, Zhang et al. [43] is the first and only
attempt that can report whether an account is shared by multiple
users and explicitly identify these users. They focus on item ratings
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and show how conventional methods such as expectation maxi-
mization and principal component analysis can be used for user
identification via a specialized subspace clustering. However, their
models cannot incorporate metadata. The experiments in Section 5
will compare our SHE-UI with Zhang et al. [43] (referred to as SS
in Table 3.)

Fraud detection can be treated as a special case of user identi-
fication. Previous work detects malicious users based on context
information such as social network structures [2, 8] and unusual
behavior patterns [21, 23]. However, all of them identify the only
one user in an account and cannot deal with the situations with
multiple users.

2.3 Session-based Item Recommendation
Some recent studies have investigated session-based recommen-
dation [19, 36], i.e., tracking and modeling subsequent sessions
of the same users (assuming we have the knowledge of user for
each session) for item recommendation. Conventional approaches,
including Markov Decision Process [31] and Matrix Factorization
[20], are adapted for session-based recommendation. More recently,
Recurrent Neural Networks (RNN) are also used for session-based
recommendation. Although these studies have shown that session-
based recommendation outperforms conventional recommender
systems, they do not address the problem of user identification in
shared accounts.

2.4 Personalized Search via Individualization
Aside from recommendation systems, it is also important to model
individual users in search engines so that personalized search can
be provided. Under the context of search engine, what users share
are devices [41], rather than accounts. Therefore, White et al. [40,
41] and Singla et al. [33] have investigated how to improve user
satisfaction of search engines based on identifiers of individual
users behind shared devices. However, they only make efforts on
personalizing relevance ranking with given user identifiers.

2.5 Learning Feature Representation of Users
Our work takes advantage of network embedding-based approach
to learn the feature representation of users under the setting of
graph structure so that individual users in shared accounts can be
characterized. Therefore, we would like to briefly review some of re-
cent studies. By simulating uniform random walks, Deepwalk [28]
is the first work that performs feature learning for nodes in a graph,
along with the application to multi-label classification. LINE [35]
further considers Breadth First Search in the random walk, and
apply the network embedding method for node classification and
link prediction. More recently, node2vec [18] develops a general-
ized bias random walk mechanism that can parameterize Breadth
First Search and Depth First Search, and its efficacy outperforms
the previous two methods in both multi-label classification and
link prediction. In addition to learning features on homogeneous
network, some studies focus on heterogeneous network embedding.
Chang et al. [10] applied deep neural networks to learn the repre-
sentations of networks with both texts and images. Dong et al. [13]
enhanced Deepwalk by conducting random walks based on a set of
meta-paths. Chen and Sun [11] built a heterogeneous network to
predict authors of anonymous papers with augmented meta-paths.

1. Heterogeneous
Graph Construction

Meta

Item ⋯

⋯

2. Graph and Session
Embedding

3. User Identification
by Clustering

⋯
⋯

⋯
⋯

⋯
⋯

Figure 1: The framework overview of SHE-UI.

3 PROBLEM STATEMENT
In this section, we first formally define the problem of user iden-
tification in online streaming services. Let I be the set of items,
e.g., songs and movies. For each item i ∈ I , it may have mul-
tiple attributes, e.g., artist(s) and genre(s) of a song, denoted by
Mi , as its metadata. We denote the collection of all metadata as
M =

⋃
i ∈I Mi . Here the metadata can be any discrete attribute

that can describe items. Relationships may exist between attributes
in metadata. For example, an albummj may include a song per-
formed by an artist mk . These relationships can be denoted as
R = {(mj ,mk ) | (mj ,mk ) ∈ M2,mj ,mk ,mj is related tomk }.

Let A be the set of accounts. For each account a ∈ A, the set
of users of the account is denoted as U (a), which is unknown in
advance. In the following discussion, we refer to accounts with
only one user as single-user accounts and the remaining ones as
multi-user accounts. The activity log of each account a ∈ A contains
a sequence of sessions S(a). Each session s ∈ S(a) is a sequence of
Ts items (successively requested by a user us without a long period
of inactivity): s =

〈
i1, i2, · · · , iTs

〉
∈ ITs . For multi-user accounts,

we assume that each session may be issued by one user. Note that
the actual user us of every session s is also unknown to the system.
The two goals of this work are as follows:

(1) User Identification in Past Sessions (UI-Past): Given a set
of accountsA and their corresponding sessions, for each account
a ∈ A, the first goal is to group sessions S(a) into Ka clusters
(i.e., users), C(a) = {ca1 , c

a
2 , · · · , c

a
Ka

} such that the sessions
from the same user are grouped into the same cluster where
1 ≤ Ka ≤ |S(a)|. Ka is also unknown and needs to be estimated
from the data. In other words, we would like to estimate the
ideal clusters C∗(a) grouping sessions by their actual users.

(2) User Identification for New Sessions (UI-New): Given the
identified users C(a) of an account a, for any new incoming
session s < S(a) of account a, the next goal is to predict which
user is the actual issuer of this session as early as possible. Based
on the first few items in s , we want to identify the cluster cak to
which s belongs.

4 SESSION-BASED HETEROGENEOUS GRAPH
EMBEDDING FOR USER IDENTIFICATION

In this section, we present the proposed framework, Session-based
Heterogeneous graph Embedding for User Identification (SHE-UI).
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Lady Gaga

Born This Way
(album)

The Fame Monster
(album)

Bad Kids

Born This Way

Bad Romance

Taylor Swift

Fearless
(album)

Love Story

Speak Now
(album)

Item-Item Edges

Item-Meta Edges

Meta-Meta Edges

Figure 2: An example of heterogeneous graph construction
with a session that beginswith three songs by LadyGaga and
ends with a song by Taylor Swift.

4.1 Framework Overview
Figure 1 shows the framework of SHE-UI. A heterogeneous graph
is constructed to represent the relations among items and metadata.
We first compute node embeddings from which we generate session
embeddings. Then an algorithm based on affinity propagation [15]
is proposed to simultaneously determine the cluster number Ka for
each account a and to group sessions S(a) into clusters.

4.2 Node Embedding in Heterogeneous Graph
As the first stage of SHE-UI, we encode items and metadata into an
undirected graphG = (V ,E) with heterogeneous nodes V = {I ,M}

and edges E. Specifically, each node in the graph represents an item
or an attribute in metadata; each edge represents a relationship be-
tween nodes. The set of edges E can be constructed in the following
three manners. Figure 2 shows an example of these three types of
edges within a session.

(1) Item-Item Edges: Any two items consecutively requested in
the same session are linked to each other;

(2) Item-Meta Edges: The node of each item is connected to nodes
representing attributes in its metadata;

(3) Meta-Meta Edges: Each meta relationship (mj ,mk ) ∈ R is
represented by an edge between the two corresponding nodes.

Given the heterogeneous graphG = (V ,E), we will first compute
a low-dimensional feature representation for each node. We aim
to find a mapping function f : V → Rd from nodes to their low-
dimensional feature representations, where d is the number of
dimensions of the feature representation, and f can be considered
as a |V | × d matrix, where |V | denotes the number of nodes.

4.3 Learning Node Features
We extend the skip-gram architecture [25, 27] from natural lan-
guage processing to learn the feature representations of nodes in
a heterogeneous graph. In natural language processing, the skip-
gram architecture learns relations between words and their context.
Here each node in the network is treated as a word, and some ran-
dom walk paths are sampled as sentences. We define NS (v) ⊆ V
as the neighbor nodes for each node v via a sampling method S .
Here we use a sampling method based on normalized random walk,
which is presented in Section 4.4. The skip-gram model is extended
to optimize the log-likelihood of the observed NS (v), conditioned

Algorithm 1: LearningNodeFeatures(G, t , d , l )
Input: the graph G = (V ,E), walks per node t , the feature

dimensions d , the fixed length l
Output: the embedding function f

1 walkset = ∅

2 for iter = 1 to t do
3 foreach v ∈ V do
4 W = NormalizedRandomWalk(v , l , G)
5 walkset = walkset ∪ {W }

6 f = StochasticGradientDescent(walkset , d)
7 return f

on node v’s feature representation f (v) as follows:

max
f

∑
v ∈V

log P(NS (v) | f (v)).

To make optimization more efficient, we adopt two standard as-
sumptions [18]. First, we assume that, given node v’s feature repre-
sentation, v’s neighbor nodes NS (v) can be observed conditionally
independent of each other. Then P(NS (v) | f (v)) can be factorized
by the neighbor nodes as follows:

P(NS (v) | f (v)) =
∏

n∈NS (v)

P(n | f (v)).

Second, we assume that any pair of neighboring nodes symmetri-
cally affect each other in the d-dimensional space of feature repre-
sentation. Therefore, given a node v , the conditional likelihood of
every neighbor node n ∈ NS (v) can be modeled as a softmax unit
[3] by reversing the previous formula:

P(n | f (v)) =
exp(f (n) · f (v))∑

u ∈V exp(f (u) · f (v))
.

With these assumptions, the objective function can be rewritten as:

max
f

∑
v

©­«− logZv +
∑

n∈NS (v)

f (n) · f (v)
ª®¬ ,

whereZv =
∑
u ∈V exp(f (u)·f (v)) can be approximated by negative

sampling [26]. In addition, this objective function can be optimized
by stochastic gradient descent [7]. Algorithm 1 presents the de-
tailed procedure to learn node features. Each node in the graph
will be treated as the source of t random walks. These generated
t × |V | random walks will be exploited to learn the node features
by stochastic gradient descent. After learning node features, we
will use the feature representations of items to compute session
embeddings in Section 4.5.

4.4 Normalized RandomWalk
We now present our sampling method based on normalized ran-
dom walk. Random walk is one of the most popular solutions for
graph-based embedding [18, 28]. However, traditional random walk
that treats every edge equally important is not suitable for the het-
erogeneous graph constructed above in which popular items and
metadata attributes may have much higher node degrees than the
rest. For example, popular songs can be requested by more than
ten thousand sessions while others are requested by ten sessions.
Consequently, a random walk is likely to be confined to a small
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Figure 3: An illustration for the procedure of normalized
random walks. The walk is going to be transited from p and
evaluating transition probabilities of neighbor nodes.

Algorithm 2: NormalizedRandomWalk(r , l , G)
Input: the source node r , the fixed length l and the graph G
Output: the random walkW

1 w0 = r
2 W = [w0]
3 for j = 1 to l do
4 Draww j ∼ P(w j | w j−1)
5 W .append(w j )
6 returnW

number of high degree nodes and ignores the rest of the graph. To
solve this problem, we use the normalized random walk to learn
node embedding in the heterogeneous graph.

Consider a source node r ∈ V and a random walkW from r
with a given length l . Let w j be the j-th node in the walk, where
w0 = r is the first node inW . The degree of node v is denoted as
d(v); N (v) denotes the set of neighbors of node v . Then node w j
can be generated by the normalized probability P(w j | w j−1):

P(w j = q | w j−1 = p) =

{
1/d (q)
Zp if (p,q) ∈ E

0 otherwise
,

where Zp =
∑
q′∈N (p)

1
d (q′) is the term for normalization. Figure 3

shows an example. Node p has four neighboring nodes N (p) =
{q1,q2,q3,q4}; the degree of q3 is d(q3) = 3, and the probability
of transiting to q2 is P(w j = q2 | w j−1 = p) = 0.24. The detailed
procedure of generating a l-length random walk from r is provided
in Algorithm 2. We will investigate how l affects the performance
in Section 5.3.

4.5 Item-based Session Embedding
Since each session s =

〈
i1, i2, · · · , iTs

〉
∈ ITs consists of a sequence

of items, the feature representation of a session can be computed
by a combination of item features. A naïve way to derive session
features is to simply compute the average features over all item
occurrences. However, a user’s affinity to an item may not be lin-
early correlated with the number of occurrences of the item in the
session. For example, a user may play a song 100 times and another
song 10 times. The affinity to the latter song is underestimated if
we treat each play equally important.

Algorithm 3: UserIdentification(S(a), f )
Input: the set of sessions S(a) and the embedding function f
Output: The set of cluster exemplars C(a)

1 Initialize X and Y as |S(a)| × |S(a)| matrices with zeros
2 repeat
3 for j = 1 to |S(a)| do
4 for k = 1 to |S(a)| do
5 ∆jk = maxk ′,k

{
Yjk ′ + Score

(
sj , sk ′

)}
6 X jk = Score(sj , sk ) − ∆jk

7 for j = 1 to |S(a)| do
8 for k = 1 to |S(a)| do
9 if j , k then

10 Yjk = min
(
0,
∑
j′<{j,k } max

(
0,X j′k

))
11 else
12 Ykk =

∑
j′,k max(0,X j′k )

13 until Convergence;
14 return C(a) = {sk | ∀sk ∈ S(a),Xkk > 0}

To alleviate this problem, we model user’s affinity to an item in
a session by a kernel function of the number of item occurrences in
this session. It has been shown [16, 17] that item sequences modeled
after user behaviors tend to follow a Poisson distribution. Then
we can adopt a square-root function to approximate the variance-
stabilizing transformation to model user’s affinity [14]. Let Γ(s) be
the set of distinct items in session s , and Occ(s, i) be the number of
occurrences of item i in session s . The feature representations of
session s can be defined as follows:

f (s) =
1∑

i ∈Γ(s)
√
Occ(s, i)

∑
i ∈Γ(s)

√
Occ(s, i) · f (i).

These session features f (s) can appropriately represent the charac-
teristics of items in the session.

4.6 User Identification
After obtaining session features, we want to detect the number of
users of each account a and group sessions by their actual issuers
automatically. While most of the clustering algorithms require the
number of clusters Ka as an input parameter, we propose using
affinity propagation [15] algorithm to automatically discover the
appropriate clustering number.

Specifically, we propose to cluster these sessions via a mes-
sage passing mechanism between sessions, in which the exemplars
are found and considered as the cluster representatives. The algo-
rithm passes messages between sessions and iteratively updates
two |S(a)| × |S(a)| matrices: responsibility matrix X and availabil-
ity matrix Y . The responsibility value X jk represents how session
sk is suitable to be the exemplar of session sj compared to other
exemplars. The availability value Yjk estimates how appropriate
for session sj to pick sk as its exemplar. Both X and Y are log-
probability matrices. At the beginning, they are initialized to zero.
In each iteration, all elements in X are estimated by Yjk and a score
function Score(sj , sk ) between features of two sessions sj and sk .
Here Score(sj , sk ) is defined as the L2-distance between two feature
vectors. Then we update Yjk by summing up responsibilities in
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X . We iteratively update X and Y until convergence. The sessions
which remain positive responsibilities are the exemplars. The clus-
ter number is the number of exemplars found in an account. This
procedure is described in Algorithm 3. These exemplars will be
used for user identification in past and future sessions.

User Identification using Cluster Exemplars. Recall that Sec-
tion 3 introduced two goals of user identification, UI-Past and UI-
New. To identify users from past sessions (i.e., UI-Past), Algorithm
3 can directly output the clusters of past sessions issued by an ac-
count, and each cluster corresponds to a user. To predict the user
of a new session (i.e., UI-New) in account a, we need to, from all
users detected for account a from UI-Past, find the one who is most
likely to issue the new session only using the first few (say, ρ) items
in the new session. These ρ items are treated as a shorter session
from which we derive its feature representation follow the same
procedure in Section 4.5. Then we can obtain its corresponding
exemplar and cluster assignment by computing the L2-distance
between feature vectors. The cluster with the shortest distance to
the given new session is considered as the corresponding user. Here,
ρ should be a small integer because our task is to identify the user
as soon as he/she issues a new session. We will also investigate
how ρ affects the performance in Section 5.3.

4.7 Complexity Analysis
Here we analyze the time and space complexity of SHE-UI.

Time Complexity. It costsO(|R |+
∑
i ∈I |t(i)|+

∑
a∈A

∑
s ∈S (a)Ts )

time to construct the heterogeneous graph. Assume that the num-
ber of metadata |t(i)| for each item i and the length Ts of each
session s are small constants. It becomes O(|R | + |I | + |S |), where
S =

⋃
a∈A S(a) is the set of all sessions of all accounts. Then SHE-UI

spends O(t · |V | · l) = O(|I | + |M |) time on collecting normalized
random walk paths, where t and l are also treated as small con-
stants. To obtain feature representations of nodes, the stochastic
gradient descent process takes O(|V |2) = O(|I |2 + |M |2). Finally,
the affinity propagation-based method determines the cluster num-
ber and clusters sessions in O(

∑
a∈A |S(a)|2) time. In addition, user

identification cluster each account independently, so the algorithm
is parallelizable. In summary, the time complexity of SHE-UI is
acceptable as O(|R | + |I |2 + |M |2 +

∑
a∈A |S(a)|2).

Space Complexity. The heterogeneous graph occupies O(E) =
O(|R | + |I | + |S |) to store the edges. The random walk paths need
O(|V |) = O(|I |+ |M |). Node and session features takesO(|V |+ |S |) =
O(|V | + |I | + |M |) space. Finally, the affinity propagation costs
O(|S(a)|2) space to create the responsibility and availability matri-
ces for each account. If the algorithm runs sequentially, it takes
O(maxa∈A |S(a)|2); otherwise, the parallelized algorithm has to
spend O(

∑
a∈A |S(a)|2) on storing matrices for all accounts simul-

taneously. Therefore, the space complexity of SHE-UI is O(|R | +
|I | + |M | +maxa∈A |S(a)|2) or O(|R | + |I | + |M | +

∑
a∈A |S(a)|2).

5 EXPERIMENTS
5.1 Datasets and Experimental Settings
The experiments are conducted on two datasets:
• Synthetic Last.fm (Last.fm). Last.fm [9] provides publicly avail-
able datasets for music recommendation. The Last.fm-1K dataset

Number of Account Users
1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
ta

g
e

 o
f 

A
c

c
o

u
n

ts

 0%

 5%

10%

15%

20%

25%

Figure 4: The percentage of ac-
counts over different numbers
of account users in the real-
word KKBOX dataset.

Group of Session Pairs
Same Users Different Users

%
 o

f 
S

e
s
s
io

n
 P

a
ir

s

30%

40%

50%

60%

Song Artist Album Published year Genre

Figure 5: The percentage of
session pairs sharing items or
metadata within accounts in the
KKBOX dataset. A pair of ses-
sions can be issued by the same
user or two different users.

Table 2: Statistics of Two Datasets.

(a) Session Information

Last.fm KKBOX
training 209,313 10,783,556sessions
testing 209,925 10,782,507sessions
accounts 370 88,399

unique users 922 343,723
items 314,763 564,164

(b) Metadata

Last.fm
artists 60,410

KKBOX
artists 43,157
albums 253,896
published years 77
genres 48

contains streaming (or listening) history of 1K users from Feb
2005 to May 2009. Since Last.fm-1K does not provide any in-
formation about account sharing, we manually create synthetic
accounts by merging several users’ history together following
a similar procedure to that in [37]. 25% of accounts have 1, 2, 3,
and 4 users respectively. Each user only belongs to one account.

• Real data from KKBOX (KKBOX). The dataset comprises lis-
tening logs of 100K accounts from the KKBOX music streaming
service from December 1, 2014 to November 30, 2015. In this
dataset, we use the device ID as the bronze standard to evaluate
the accuracy of our user identification. Sessions with the same
device ID are treated as being issued by the same user. Figure 4
shows the percentage of accounts over different number of shar-
ing users. More than 75% of accounts in the real-world dataset
are shared by multiple users. Figure 5 further illustrates the per-
centage of session pairs sharing common items or metadata. We
observe that, among all sessions of a given multi-user account,
sessions issued by the same user are much more likely to share
common items or metadata than that of different users.

Data Preprocessing. In online streaming services, the log of each
account is a sequence of entries, each of which contains a selected
item with a timestamp. The log of each account can be partitioned
into a list of sessions. We use 30 minutes of inactivity to define ses-
sion boundaries. We exclude items of fewer than ten occurrences
and accounts and sessions with fewer than ten entries. For the
Last.fm dataset, the only available metadata are the artists of songs.
For the KKBOX dataset, the available metadata include artists, al-
bums, published years and genres. For both Last.fm and KKBOX
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datasets, we use 50% sessions for training and 50% sessions for
testing for the UI-Past task (clustering sessions into groups of users
sharing an account) and the UI-New task (identifying the user of
an incoming session), respectively. Table 2 shows the statistics of
the two datasets after data cleaning and preprocessing.

Default Parameter Settings. Unless we specify otherwise, we set
the length of random walks l to 5, and the dimension of features d
to 512. For each node in the graph, 10 random walks are generated
(i.e., t = 10 in Algorithm 1). For each session in UI-New, the first 5
items are used to derive session features (i.e., ρ = 5 in Section 4.6).
The effects of these parameters are analyzed in Section 5.3.

Evaluation Tasks. There are three evaluation tasks as follows.

• (1) User Number Estimation: we examine whether SHE-UI
can accurately determine the number of users using the same ac-
count (i.e., the number of clusters among sessions of an account).
Note that this evaluation can be regarded as Multi-user Account
Detection. That says, accounts with two or more estimated users
can be treated as multi-user ones. We consider this task as a
regression problem, and thus useMean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) [22] as the evaluation metrics
to measure the difference between the number of users |U (a)|
and the number of estimated clusters |C(a)| for every account
a ∈ A. We examine the performance of our approach with affinity
propagation (AP) [15], which can automatically determine the
number of clusters (i.e., users).

• (2) Performance in UI-Past and (3) Performance in UI-New:
we aim to evaluate the performance of SHE-UI for the tasks of UI-
Past and UI-New, compared with a series of baseline methods. To
further evaluate the effectiveness of session embedding in SHE-
UI, experiments were conducted two times, with and without
giving the number of users (i.e., session clusters) as input. If
the numbers of users are known, K-Means++ [4] is applied to
cluster sessions; otherwise, Algorithm 3 is applied. We compare
the performance of SHE-UI using three conventional clustering
evaluation metrics, including Normalized Mutual Information
(NMI) [34], Macro F-Score (MAF) and Micro F-Score (MIF) [29].

Baseline Methods. To evaluate the performance in UI-Past and
UI-New, we compare SHE-UI with several state of the art item-
based clustering and embedding-based clustering methods. The
item-based clustering methods treat items in sessions as features,
which include KMeans++ (KM) [4], affinity propagation (AP) [15]
and subspace clustering (SS) [43]. The embedding-based cluster-
ing methods derive d-dimensional representations of sessions for
clustering, which include word2vec (W2V) [26], LINE [35] and
DeepWalk (DW) [28]. Note that these embedding-based cluster-
ing methods only derive the feature representations of items and
need to apply our approach in Section 4.5 and Section 4.6 to obtain
session embedding and the clustering results. We do not furnish a
comparison with node2vec [18] since it is too time-consuming to
compute probabilities for alias edges in a large dense graph.

5.2 User Identification Performance
User Number Estimation. Figure 6 shows the performance of
detecting cluster numbers for accounts with different numbers of
users. SHE-UI significantly outperforms AP, especially in accounts
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Figure 6: The performance of determining the cluster num-
ber. The lower MAE and RMSE indicate the better perfor-
mance. All improvements are statistically significant at 95%
confidence level by a paired t-test.

with multiple users. Such results prove the usefulness of session
embedding in SHE-UI. The improvement is more significant in
KKBOX dataset. KKBOX has much richer metadata that translate
into amuch larger andmore diverse graph, which creates significant
challenges for AP.We can further observe that bothMAE and RMSE
of AP fluctuate as the number of users increases. In contrast, SHE-
UI consistently has lower errors. Such results demonstrate that
SHE-UI can make accurate prediction even for accounts shared by
a large number of users (e.g., 8, in Figure 6(b)).
Performance in UI-Past. Table 3 shows the results. Note that
the result of AP is not reported under the section "Known Num-
bers of Users” since it cannot take a predefined cluster number.
Also note that under “Unknown Numbers of Users”, all compared
methods except AP utilize our method (Section 4.6) to determine
cluster numbers because they need it as an input parameter. We
observe that SHE-UI consistently outperforms other methods in
every metric for the real-world data and almost all metrics for the
synthetic dataset, especially the improvement in NMI is more than
10% over the best competitor DW. Note that NMI values are rela-
tively low (compared with MAF and MIF) since NMI is sensitive to
the cluster size. As expected, when the cluster number is unknown,
the performance of all methods degrades (comparing to the case
where the cluster number is unknown). Nevertheless, SHE-UI can
still perform reasonably well since it can accurately estimate the
numbers of users in accounts (as proved in Figure 6). Furthermore,
the embedding-based methods generally outperform item-based
methods. Note that LINE performs the worst in Last.fm dataset
because the information of metadata is too sparse for LINE to cap-
ture appropriate features through edge sampling. Such result not
only shows the effectiveness of embedding-based approaches but
also verifies the capacity of SHE-UI to accurately derive session
embedding.
Performance in UI-New. Table 3 shows the results of UI-New as
well. We observe similar performance to that in UI-Past: SHE-UI
outperforms other competing methods in every metric for the real-
world dataset and almost all metrics for the synthetic dataset. For
instance, SHE-UI outperforms the best competitor (i.e., DW) by
around 15% of NMI in Last.fm and by around 12% in KKBOX on
average for both cases with known and unknown numbers of users.
In addition, the performance in UI-New is generally worse than
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Table 3: The results of user identification behind shared accounts. The higher values inmetrics indicate the better performance.
All improvements of SHE-UI against DW [28] are statistically significant at 95% confidence level by a paired t-test.

Dataset Synthetic Last.fm Real Data from KKBOX
UI-Past UI-New UI-Past UI-New

Metric NMI MAF MIF NMI MAF MIF NMI MAF MIF NMI MAF MIF
Known Numbers of Users

KM [4] 0.2956 0.6109 0.7400 0.2802 0.6106 0.7400 0.3640 0.5710 0.6516 0.3286 0.5644 0.6592
SS [43] 0.2954 0.6109 0.7405 0.2793 0.6105 0.7403 0.3627 0.5707 0.6612 0.3258 0.5642 0.6585

W2V [26] 0.4865 0.7022 0.7982 0.4428 0.6823 0.7769 0.3828 0.5855 0.6524 0.3571 0.5739 0.6488
LINE [35] 0.2667 0.5611 0.6544 0.2622 0.5724 0.6768 0.3830 0.5874 0.6463 0.3456 0.5634 0.6183
DW [28] 0.5597 0.7372 0.8162 0.5148 0.7161 0.7947 0.3995 0.5976 0.6656 0.3587 0.5775 0.6419
SHE-UI 0.6108 0.7613 0.8393 0.5718 0.7455 0.8236 0.4281 0.6111 0.6804 0.3880 0.5948 0.6625

Unknown Numbers of Users
AP [15] 0.1677 0.3413 0.3474 0.1546 0.4825 0.5408 0.1884 0.4828 0.4978 0.1783 0.5225 0.5569
KM [4] 0.1189 0.5842 0.7003 0.1061 0.5622 0.6697 0.1856 0.5264 0.5849 0.1516 0.5041 0.5642
SS [43] 0.1518 0.5838 0.6856 0.1312 0.5616 0.6582 0.1927 0.5312 0.5904 0.1841 0.5151 0.5851

W2V [26] 0.2981 0.6413 0.6587 0.2560 0.6148 0.6347 0.2081 0.5337 0.6025 0.1807 0.5149 0.5818
LINE [35] 0.0813 0.5641 0.6687 0.0964 0.5546 0.6552 0.1955 0.5365 0.6083 0.1010 0.4782 0.5394
DW [28] 0.3053 0.6286 0.6557 0.2669 0.5966 0.6244 0.2158 0.5508 0.6249 0.1941 0.5322 0.6024
SHE-UI 0.3375 0.6563 0.6782 0.3214 0.6323 0.6568 0.2426 0.5610 0.6309 0.2218 0.5451 0.6117

that in UI-Past because only the first ρ items of a new session are
used. In summary, SHE-UI is able to efficiently identify the user of
any incoming session (among all users sharing an account). We will
demonstrate its utility in improving the performance of online item
recommendation customized for the identified user in Section 5.4.

5.3 Study of Parameter Sensitivity
This section presents how parameter settings in SHE-UI may affect
its performance in user number estimation and user identification.
We present only the performance using the KKBOX dataset, as we
observe a similar performance on Last.fm.

Figure 7(a) and 7(e) exhibit the performance of user identifica-
tion measured by NMI as a function of the length of normalized
random walk (i.e., l in Algorithm 2) for the scenarios of known and
unknown numbers of users respectively. Even though the perfor-
mance generally improves as the length increases, we observe that
it saturates when the length reaches five. Longer random walk does
not necessarily warrant additional benefit. We thus set our default
length to 5.

Figure 7(b) and 7(f) show the performance by varying the feature
dimensions (i.e., d in Algorithm 1). The results show that, while
higher dimensions can in general lead to more accurate user iden-
tification, the performance plateaus at 512 dimensions. We thus
choose 512 as our default setting.

Figure 7(c) and 7(g) exhibit how the performance of SHE-UI is
affected by the number of random walks generated for each node
(i.e., t in Algorithm 1). The results are generally consistent with
the intuition that more sampled walks lead to better performance.
However, the performance saturates when the number reaches
to 10, which is our choice of default value. This is because too
many random walks starting from a node tend to bring duplicate
information into feature representation.

Figure 7(d) and 7(h) demonstrate the performance of SHE-UI
in UI-New by varying the number of items used to derive session

features (i.e., ρ in Section 4.6). The performance is significantly
better when the number of users is known than otherwise. It is
also reasonable that more items seen in a new session lead to better
performance of identifying the corresponding user. We set the
default value to 5.

5.4 Item Recommendation with SHE-UI
Conventional recommender systems [6, 9, 20] do not attempt to
distinguish users sharing the same account and thus can only rec-
ommend items to “accounts”, termed account-level recommendation
(ARec) here. The preferences of individual users are not adequately
captured. It is expected that by adding user-level recommendation
(URec), we can effectively model the user preferences. Therefore, we
propose a hybrid recommender that linearly combines the Account-
level and User-level item RECommendation, which is termed AU-
Rec.

Let RA(a, i) and RU (u, i) be item i’s recommendation scores that
ARec gives to account a and URec gives to the identified user u
of account a, respectively. We employ the Bayesian personalized
ranking matrix factorization (BPRMF) [30] model to compute the
RA and RU scores. For a session s issued by the useru in the account
a, AURec estimates the score of the item i by

RAU (a,u, i) = (1 − α) · RA(a, i) + α · RU (u, i),

where α is the parameter to control the weights of URec and ARec,
and we set α = 0.6 by default.

Evaluation Settings.The evaluation is conducted by using KKBOX
data, in which items are songs. The split of training and testing
is the same as in Section 5.1. We ran these experiments under the
setting of UI-New with unknown numbers of users. We consider
item recommendation as a ranking task. For each session s in the
testing data, we want to examine how well we can predict the re-
maining items in the session based on the first 5 items. We first
compute the RAU for every item and sort them by descending order
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Figure 7: Results of Parameter Sensitivity Study.

of their RAU scores. We then examine the rankings of the items
appear in the remainder part of the session s . Ideally, we want to
see that these items are top ranked by the RAU scores. To quantita-
tively measure the recommendation performance, we use standard
evaluation metrics [12], including Mean Reciprocal Rank (MRR),
Mean Average Precision (MAP) and Precision at k (P@k) to compare
AURec with four ARec recommender systems: recommendation by
item popularity (PopRec), maximum margin matrix factorization
(MMMF) [39], Bayesian personalized ranking matrix factorization
(BPRMF) [30], and collaborative less-is-more filtering (CLiMF) [32].

Experimental Results. Table 4 shows the results. It is clear that
AURec significantly outperforms the best ARec competitor (i.e.,
MMMF) by a wide margin (from 22% to 39% in the three metrics).
Such result reveals that user identification using SHE-UI can truly
enhance the accuracy of item recommendation. To understand how
parameters influence the recommendation performance, we further
vary k in P@k and α in AURec. The results are shown in Figure
8. We observe that AURec consistently outperforms others as k
increases. In Figure 8(b), the best performance is achieved at α = 0.6
which demonstrates the need for combining URec and ARec. Using
either ARec (α = 0) or URec (α = 1) along will produce substantially
worse performance. It is worth noting that this task is extremely
challenging. A session may be relatively short, consisting only a
small number of items. A user may have broad interests and may
not always play all of his/her favorite songs in one single session. In
the above setting, a favorite item is counted as a negative instance
if it does not appear in the current testing session.

6 CONCLUSIONS AND DISCUSSIONS
This paper investigates the problem of identifying individual users
behind shared accounts in two settings: for historical data (UI-Past),

Table 4: Results of item recommendation with AURec.

PopRec MMMF [39] BPRMF [30] CLiMF [32] AURec
MRR 0.1242 0.1421 0.1353 0.1400 0.1727 (+22%)
MAP 0.0317 0.0331 0.0330 0.0337 0.0439 (+30%)
P@1 0.0597 0.0608 0.0577 0.0597 0.0846 (+39%)
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Figure 8: Results of recommendation by varying k and α .

and for incoming sessions (UI-New). An unsupervised learning-
based framework, Session-based Heterogeneous graph Embedding
for User Identification (SHE-UI), is proposed. Experiments con-
ducted on KKBOX and Last.fm datasets demonstrate that SHE-UI
can not only outperform the best competitor by at least 10% in
UI-Past and 12% in UI-New in terms of NMI, but also significantly
improve the performance of music recommendation by 39% mea-
sured by Precision@1. Accurate user identification is beneficial
to both users and service providers. Users can enjoy a “true” rec-
ommendation while service providers can establish more desirable
marketing strategies according to the behaviors of sharing accounts.
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The content providers (e.g. artists and publishers) can also gain
insights in the taste and trend of different user groups.

The Session-basedHeterogeneous graph Embedding (SHE) learns
the feature representation for each session, which may be appli-
cable to inferring account attributes, predicting session life-cycle,
and detecting abnormal accounts, in addition to user identification.
Moreover, the proposed SHE-UI can be applied to any activity and
event sequences, allowing for incorporation of metadata. For ex-
ample, one may study activity traces from smart devices and apply
SHE-UI for activity recognition.
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