
Open Source Repository Recommendation in Social Coding
Jyun-Yu Jiang

Department of Computer Science

University of California, Los Angeles

jyunyu.jiang@gmail.com

Pu-Jen Cheng

Department of Computer Science

National Taiwan University

pjcheng@csie.ntu.edu.tw

Wei Wang

Department of Computer Science

University of California, Los Angeles

weiwang@cs.ucla.edu

ABSTRACT
Social coding and open source repositories have become more and

more popular. So�ware developers have various alternatives to con-

tribute themselves to the communities and collaborate with others.

However, nowadays there is no e�ective recommender suggesting

developers appropriate repositories in both the academia and the

industry. Although existing one-class collaborative �ltering (OCCF)

approaches can be applied to this problem, they do not consider

particular constraints of social coding such as the programming lan-

guages, which, to some extent, associate the repositories with the

developers. �e aim of this paper is to investigate the feasibility of

leveraging user programming language preference to improve the

performance of OCCF-based repository recommendation. Based

on matrix factorization, we propose language-regularized matrix

factorization (LRMF), which is regularized by the relationships

between user programming language preferences. Extensive exper-

iments have been conducted on the real-world dataset of GitHub.

�e results demonstrate that our framework signi�cantly outper-

forms �ve competitive baselines.

CCS CONCEPTS
•Information systems →Social recommendation; Geographic
information systems; •Human-centered computing→Social rec-
ommendation; Social networking sites;

KEYWORDS
open source repository; repository recommendation; user program-

ming language preference; manifold regularization

ACM Reference format:
Jyun-Yu Jiang, Pu-Jen Cheng, and Wei Wang. 2017. Open Source Repository

Recommendation in Social Coding. In Proceedings of SIGIR ’17, August 07-11,
2017, Shinjuku, Tokyo, Japan, , 4 pages.

DOI: h�p://dx.doi.org/10.1145/3077136.3080753

1 INTRODUCTION
Social coding, such as the services provided by SourceForge

1
and

GitHub
2
, has become one of the most important collaborative ap-

proaches for open-source so�ware development. By social coding,

1
SourceForge: h�ps://sourceforge.net/

2
GitHub: h�ps://github.com/

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3077136.3080753

so�ware projects called “repositories” can be publicly created and

easily contributed by collaborators from the whole world. However,

currently there is not any personalized repository recommender to

suggest appropriate repositories from countless candidates to users.

If repositories can be recommended to suitable users early, the de-

velopment of open source so�ware can speed up. How to precisely

recommend repositories to users is, therefore, an important issue.

One possible solution to repository recommendation is one-class

collaborative �ltering (OCCF) [14] because users’ past activities

reveal what repositories they might be interested in. Without neg-

ative instances (i.e., the capacity of observing a user dislikes an

item), OCCF captures implicit feedback and ranks items in a rea-

sonable order. For example, some works [20] focus on the pairwise

relations between observed and non-observed items. Although

conventional OCCF approaches can recommend items with only

positive feedback, none of them considers the particular constraints

in the relationship between social coding and repositories.

Programming language
3

is one of the constraints in social coding.

�e language usage of a collaborator may depend on her coding

abilities and experiences [12]. Programming language is also an

essential part for repositories because programmers invariably have

to choose languages to develop projects. For instance, a front-

end application could be implemented in JavaScript and CSS; the

applications for Apple iOS devices are implemented in Swi� or

Objective-C. Some interpreted languages like Python are adopted

due to their convenience; others like C are utilized for execution

e�ciency. �e language preference coming from both users and

repositories implies that the repositories of interest to a user are

limited. It is expected that the performance of CF could be further

boosted by considering not only the repository preference of user

neighbors but also the language preference between them.

A possible solution that exploits the language information is

to directly treat languages as tags or categorical features [4]. For

example, a recommender can recommend repositories with lan-

guages identical to users’ used languages [22]. Some conventional

factorization models can be expanded as tensors[7] or factoriza-

tion machines [15]. However, language information is generally

too sparse as categorical features because each repository is desig-

nated for only few languages and only few languages are used by

a user [12]. Moreover, users’ language preference may potentially

a�ect the relationship between other users and repositories in CF.

Such phenomenon is not taken into account by previous methods,

which consequently do not fully take the advantage of the language

information for repository recommendation.

In this paper, we focus mainly on exploiting user language pref-

erence to improve the performance of repository recommendation

3Programming language is hereina�er referred to as language for simplicity.

Short Research Paper SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1173

https://sourceforge.net/
https://github.com/

on GitHub. Given the user language preference and preferred repos-

itories in the training data, the goal of this paper is to rank all other

repositories so that the top-ranked repositories are more likely to be

interesting to the user. Because language preference may implicitly

represent several user a�ributes, the di�erence of language prefer-

ence between users is taken into account. By assuming that users

with similar language preferences may also have similar repository

preferences, we propose a regularization framework LRMF formed

with latent factor based OCCF models. Extensive experiments have

been conducted on the four-year GitHub logs. �e experimental

results show that our approach signi�cantly outperforms �ve com-

petitive baseline methods and their variations. Such improvements

are consistent across subsets of the testing set with di�erent user

and repository distributions.

In the literature, social coding has been popular and discussed

in many aspects, such as transparency [3] and collaboration [9]. To

the best of our knowledge, currently there is no thorough published

study about personalized repository recommendation. Although

Suchal and Návrat [18] mentioned “recommendation,” they only

built a full-text search engine but not a personalized recommender.

Orii [13] applied topic models to recommend repositories, but the

performance is poor and the results are not published. Yu et al.
[21] utilized the simple TF-IDF measure to recommend expert re-

viewers for pull-request. Although their solution can be reversed

to repository recommendation, only the experts who can become

reviewers will be recommended. Hence, a thorough study of repos-

itory recommendation and an e�ective recommender are necessary

for social coding.

2 REPOSITORY RECOMMENDATIONWITH
USER LANGUAGE PREFERENCE

We �rst formally de�ne the problem of repository recommendation.

Let U be the user set and I be the repository set. Suppose there

are a training set of observations S ⊆ U × I , and a testing set

T ⊆ (U × I) \S . Each entry (u, i) in S andT represents that the user

u prefers the repository i . For simplicity, repositories preferred by a

user u in the training and testing sets are denoted as S (u) andT (u).
�e language set is represented as L. For a repository i ∈ I , L(i)
denotes its applied language. Given a user u ∈ U and the training

data S , our goal is to give a ranking to repositories i ∈ I \ S (u) so

that ones with higher rankings are more likely to be in T (u).
Here we propose Language-Regularized Matrix Factoriza-

tion (LRMF). �e framework starts from matrix factorization for

obtaining knowledge from collaborative �ltering. We assume that

users with similar language preference may also have similar reposi-

tory preference, and add regularization terms to re�ect the concepts.

To estimate the similarity of language preference, two kinds of pref-

erence representations are proposed.

2.1 Matrix Factorization
LRMF rests upon general matrix factorization (MF) [8] learning

from collaborative �ltering. Actually, almost all of latent factor

based models can be utilized in our framework. Hence, theoretically

our model can at least perform as well as the applied models.

In this paper, we choose Bayesian personalized ranking matrix

factorization (BPRMF) [16] because it is one of the state-of-the-art

OCCF models. As a MF model, BPRMF treats all predictions r̂ui as a

|U | × |I | target matrix R̂, and predicts the matrix by a k × |U | matrix

P and a k × |I | matrix Q as R̂ = PTQ, where k is the dimension of

hidden factors. Each column pu in P represents the user vector of

the user u, and each column qi in Q is the item vector of the item

i . Optimizing AUC (area under the ROC curve) [5], the objective

function of BPRMF can be wri�en as follows:

argmin

P,Q
BPR-OPT (1)

= argmin

P,Q

∑
u ∈U

∑
(i, j)∈Ds (u)

− ln(σ (r̂ui j)) +
λ1

2

(
| |P| |2F + | |Q| |

2

F

)
,

where Ds (u) is the set of preferred and unpreferred item pairs for

the user u; σ is the logistic sigmoid; | | · | |F represents the Frobenius

norm for regularization of two matrices; and λ1 is the regularization

parameter. With optimization methods such as gradient descent,

the model can reach a local minimum and optimize the errors.

In our implementation, the bootstrapping-based stochastic gra-

dient descent approach is applied as [16] recommends. In each

training iteration, we randomly sample an unpreferred repository

j ∈ I \ S (u) for every observation (u, i) ∈ S , and then optimize the

model. Hence, the optimization of BPRMF can be done in O (k |S |)
for each training iteration.

2.2 User Language Preference Regularization
�e main principle in this paper is that user language preference

is really helpful for the repository recommendation. Here we pro-

pose two intuitive assumptions for establishing the regularization

framework:

Assumption 1. If two users have similar languages preference,
they will also have similar preference in repositories.

Assumption 2. Given a well-trained matrix factorization model,
if two users x and y have similar preference in repositories, they will
also be close to each other in their user latent factors px and py .

By the �rst assumption, user language preference can be linked

to how users prefer repositories, which is the core of personalized

repository recommendation. However, we have to encode this

concept into the model, so the other assumption is needed. �e

second assumption is more intuitive and almost equivalent to the

low-rank assumption in collaborative �ltering. Hence, by two

assumptions, we can connect the actual objective function in the

optimization with user language preference.

To add user language preference into the model, we propose to

apply the manifold regularization framework and improve model

by the geometrical structure of the data [2]. Taking the assump-

tions, the framework preserves the local invariance [1], i.e., nearby

language preferences lead to the similar user latent factors. Suppose

the language preference of a user u can be represented as a vector

θu , the preference similarity for two user can be measured by any of

well-de�ned similarity functions. For two users x and y, we simply

use the cosine similarity as the similarity function w
(
θx ,θy

)
By

the manifold regularization framework, the proposed assumptions

can be characterized as a regularizer as follows:

1

2

∑
x ∈U

∑
y∈U \{x }

(
px − py

)
2

w
(
θx ,θy

)
, (2)

Short Research Paper SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1174

where px and py are the user latent factors of users x and y. By

combining Eq. (1) and (2), we �nally can write the objective function

of our model as follows:

argmin

P,Q
BPR-OPT +

λ2

2

∑
x ∈U

∑
y∈U \{x }

(
px − py

)
2

w
(
θx ,θy

)
,

where λ2 is also a parameter for regularization. By introducing

the regularizer into the objective function, the matrix P can be

optimized more smoothly with respect to the relationship between

users’ language preferences.

However, the time complexity will be so large as O (|U |2) if we

directly optimize the regularizer. To train the model more e�ciently,

we apply bootstrapping-based stochastic gradient descent again

by sampling c |U | user pairs, where c is a constant for adjustment.

In this paper, we set c = 100. �erefore, the optimization of the

language preference regularization can be done in O (|U |) for each

training iteration.

2.3 Preference Representation
In this section, we propose two kinds of representations for user

language preference, including the vector space model (VSM) and

the latent factor model (LFM).

Vector Space Model (VSM). VSM has been widely used in infor-

mation retrieval [17]. VSM applies a vector whose dimensions

correspond the weights of separate terms to represent a document.

�is concept is also useful in collaborative �ltering [10]. Treating

each language as a term and observations in S (u) as the document,

θu can be represented as a |L|-dimensional vector θu by TF-IDF in

the vector space of languages. In other words, VSM takes user’s past

language usage into account to represent the language preference.

Latent Factor Model (LFM). However, VSM may have room for

improvement because (1) users may tend to apply few languages;

(2) VSM does not consider the relationship between languages.

One feasible solution is to reduce the dimensions of vectors for

more representative representations. LFM is one of solutions for

dimension reduction. If a user preferred a repository of a language,

we can say that the user also preferred such language. Hence, the

language preference can be treated as a OCCF problem. In this paper,

we apply BPRMF [16] again to derive user latent factors as language

preferences. Suppose the user preference for each language can be

described in a |U | × |L| matrix R2, BPRMF decomposes the matrix

by a k × |U | matrix G and a k × |L| where k is also the dimension of

latent factors. Each column gu in G represents the user vector of the

user u. Finally, the language preference θu is assigned by the user

factor gu in the latent factor model. By reducing the dimensions

from |L| to k , the language preference can be represented precisely

within few dimensions. Moreover, each dimension of the vector can

further explain the preference for multiple programming languages.

3 EXPERIMENTS
3.1 Experimental Settings and Datasets
We conduct experiments on data collected from GitHub Archive

4
,

which comprises all public user events on GitHub from 12 February

2011 to 31 December 2014. In this paper, a user is considered to

4
GitHub Archive: h�ps://www.githubarchive.org/

Table 1: �e description of each testing subset.

Dataset #(users) #(repos) Description

Overall 10,000 10,000 All users and all repositories

Head Users 2,000 10,000 Users with top 20% frequency

Tail Users 2,000 10,000 Users with bo�om 20% frequency

Head Repos 10,000 2,000 Repos with top 20% frequency

Tail Repos 10,000 2,000 Repos with bo�om 20% frequency

Head Langs 10,000 9,584 Languages with top 20% frequency

Tail Langs 10,000 74 Languages with bo�om 20% frequency

prefer a repository if the user does any of the �ve activities in-

cluding PushEvent, IssueEvent, ForkEvent, PullRequestEvent
and WatchEvent, whose de�nitions can be found in GitHub. Every

repository has some metadata including the programming language

for implementation. To be fair to previous work, our experimental

se�ings is exactly identical to [16]. Users and repositories with less

than 10 occurrences in the logs are dropped because they may not

be active. A subsample of 10,000 users and 10,000 repositories with

616,633 observations is created so that every user prefers at least 10

repositories, and every repository is preferred by at least 10 users.

A 10-fold cross-validation scheme is applied to evaluate the per-

formance. For all models with latent factors, the latent dimension

k is set to 30 because a larger k leads to similar performance. �e

parameters λ1 and λ2 are automatically tuned by a grid search. �e

learning rate is �ne-tuned by line search in each iteration based on

the validation performance. All latent factors based baselines are

tuned by the same method.

To evaluate performance on di�erent situations, seven testing

datasets are generated as shown in Table 1 . In addition to the overall

testing set, we evaluate the performance for users, repositories and

languages with di�erent popularity.

3.2 Baseline Methods
Our approach is compared to �ve baselines:

• Most-Popular (MP): MP is the naı̈ve method which simply

ranks all repositories by their frequencies.

• Weighted Regularized MF (WRMF): WRMF [6, 14] applies

implicit feedback with weighted regularization for unknown

preferences.

• MaximumMargin MF (MMMF): MMMF [20, 20] exploits or-

dinal ranking for recommendation.

• Bayesian Personalized Ranking MF (BPRMF): BPRMF [16]

is one of the state-of-the-art approach for ranking in the OCCF

problem as described in Section 2.1.

• Factorization Machine (FM): FM [15] mimics factorization

models by feature engineering. Hence it can consider additional

features such as language preference into the model. Note that

FM is the only baseline considering the information of program-

ming languages in this paper.

3.3 Experimental Results
In our experiments, area under the ROC curve (AUC) [5], R-Precision
(RP) [11] and mean reciprocal rank (MRR) [19] are applied to eval-

uate the quality of repository recommendation. Table 2 shows

the experimental results. Among all baselines, FM performs best

Short Research Paper SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1175

https://www.githubarchive.org/

Table 2: �e performance of �ve methods and their vari-
ations with seven datasets. All improvements of LRMF
against the best baseline are signi�cant di�erences at 99%
level in a paired t-test.

Dataset MP WRMF MMMF BPRMF FM

LRMF LRMF

(VSM) (LFM)

Overall

AUC 0.7898 0.8815 0.8821 0.8912 0.8968 0.9165 0.9217
RP 0.0247 0.0231 0.0334 0.0353 0.0366 0.0579 0.0644

MRR 0.0900 0.0842 0.1144 0.1182 0.1203 0.1803 0.2033

Head

AUC 0.7810 0.8804 0.8726 0.8829 0.8903 0.9090 0.9150

Users

RP 0.0385 0.0500 0.0572 0.0619 0.0653 0.0902 0.1000
MRR 0.1750 0.1549 0.2130 0.2135 0.2187 0.3164 0.3544

Tail

AUC 0.7971 0.8723 0.8856 0.8930 0.8968 0.9193 0.9228

Users

RP 0.0127 0.0068 0.0203 0.0200 0.0153 0.0363 0.0393
MRR 0.0399 0.0362 0.0607 0.0593 0.0523 0.0933 0.1028

Head

AUC 0.6954 0.8386 0.8404 0.8491 0.8501 0.8814 0.8851

Repos

RP 0.0275 0.0263 0.0395 0.0428 0.0399 0.0670 0.0754
MRR 0.0935 0.0906 0.1245 0.1299 0.1249 0.1877 0.2099

Tail

AUC 0.4250 0.7942 0.7943 0.8073 0.8114 0.8477 0.8695

Repos

RP 0.0000 0.0108 0.0058 0.0068 0.0044 0.0124 0.0186
MRR 0.0019 0.0401 0.0313 0.0343 0.0246 0.0497 0.0649

Head

AUC 0.7885 0.8819 0.8823 0.8912 0.8968 0.9167 0.9218

Langs

RP 0.0236 0.0231 0.0328 0.0338 0.0360 0.0570 0.0638
MRR 0.0862 0.0834 0.1112 0.1145 0.1187 0.1758 0.1993

Tail

AUC 0.6813 0.7799 0.7711 0.7712 0.8310 0.8440 0.8405

Langs

RP 0.0259 0.1336 0.0819 0.1056 0.1897 0.1746 0.2134
MRR 0.1350 0.2842 0.2161 0.2326 0.3237 0.3320 0.3662

because it further considers language information. BPRMF outper-

forms other MF models because it optimizes the measure about

rankings directly. MMMF beats WRMF because WRMF only point-

wisely optimize the model so that it cannot learn rankings well.

LRMF signi�cantly outperforms all baselines over all evaluation

measures for both VSM and LSM. �e model using LFM is be�er

than the one using VSM because LFM represents preferences more

precisely. Although FM encodes languages as features, the complex

preferences are not learned. In contrast, LRMF captures the pref-

erence directly by observing user relationships. Among di�erent

testing datasets, it is obvious that models perform be�er with head

users/repos than tail users/repos on RP and MRR because there are

more observations in head users and head repos training sets. AUC

of head users is worse than AUC of tail users because tail users only

preferred few repositories. �at is also why AUC is sometimes not

suitable for evaluation. RP and MRR in the set of tail languages are

higher than others because the number of candidate repositories is

few.

4 CONCLUSIONS
In this paper, we propose a pairwise regularization framework

LRMF for open source repository recommendation aiming to rank

users’ preferred repositories in high positions. Compared to con-

ventional recommenders, LRMF a�empts to learn users’ language

preference and then enhance matrix factorization. Speci�cally, we

make an assumption that users with similar language preference

may also have similar preference in repositories. Following the as-

sumption, the user latent factors can be regularized by the manifold

regularization with the preference of other users. Moreover, we

further propose two ways to estimate the user language preference.

�e results of extensive experiments show that our methods can

signi�cantly outperform the existing state-of-the-art OCCF models.

Such improvements are consistent across di�erent testing sets with

di�erent user and repository distributions. �e data analysis also

supports that user language preference is important.

�ere are two ways for future work: (1) analyze contents of social

coding (i.e., codes in repositories) for further improvements; and

(2) exploit social networks in social coding (i.e., user collaborations)

for other applications like link prediction.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their helpful

comments. �e work is partially supported by NIH U01HG008488,

NIH R01GM115833, NIH U54GM114833, and NSF IIS-1313606.

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral

techniques for embedding and clustering.. In NIPS 2001. 585–591.

[2] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-

tion: A geometric framework for learning from labeled and unlabeled examples.

JMLR 7 (2006), 2399–2434.

[3] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding

in GitHub: transparency and collaboration in an open so�ware repository. In

CSCW 2012. ACM, 1277–1286.

[4] Antonina Da�olo, Felice Ferrara, and Carlo Tasso. 2010. �e role of tags for

recommendation: a survey. In Proceedings of 3rd International Conference on
Human System Interaction. IEEE, 548–555.

[5] Alan Herschtal and Bhavani Rasku�i. 2004. Optimising area under the ROC

curve using gradient descent. In ICML 2004. ACM, 49.

[6] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative �ltering for

implicit feedback datasets. In ICDM 2008. IEEE, 263–272.

[7] Tamara G Kolda and Jimeng Sun. 2008. Scalable tensor decompositions for

multi-aspect data mining. In ICDM 2008. IEEE, 363–372.

[8] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37.

[9] Antonio Lima, Luca Rossi, and Mirco Musolesi. 2014. Coding together at scale:

Github as a collaborative social network. In ICWSM 2014.

[10] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-

tions: Item-to-item collaborative �ltering. Internet Computing, IEEE 7, 1 (2003),

76–80.

[11] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, and others.

2008. Introduction to information retrieval. Vol. 1. Cambridge university press

Cambridge.

[12] Leo A Meyerovich and Ariel S Rabkin. 2013. Empirical analysis of programming

language adoption. In SIGPLAN 2013. ACM, 1–18.

[13] Naoki Orii. 2012. Collaborative Topic Modeling for Recommending GitHub

Repositories. (2012). h�p://www.cs.cmu.edu/∼norii/pub/github-ctr.pdf.

[14] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan Lukose, Martin

Scholz, and Qiang Yang. 2008. One-class collaborative �ltering. In ICDM 2008.

IEEE, 502–511.

[15] Ste�en Rendle. 2012. Factorization Machines with libFM. ACM TIST 3, 3, Article

57 (2012), 22 pages.

[16] Ste�en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

�ieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In

UAI 2009. 452–461.

[17] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model

for automatic indexing. Comm. of ACM 18, 11 (1975), 613–620.

[18] Ján Suchal and Pavol Návrat. 2010. Full text search engine as scalable k-nearest

neighbor recommendation system. In Arti�cial Intelligence in �eory and Practice
III. Springer, 165–173.

[19] Ellen M Voorhees and others. 1999. �e TREC-8 �estion Answering Track

Report.. In Trec, Vol. 99. 77–82.

[20] Markus Weimer, Alexandros Karatzoglou, and Alex Smola. 2008. Improving

maximum margin matrix factorization. Machine Learning 72, 3 (2008), 263–276.

[21] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. 2014. Reviewer Recom-

mender of Pull-Requests in GitHub. In ICSME 2014. IEEE, 609–612.

[22] Shiwan Zhao, Nan Du, Andreas Nauerz, Xiatian Zhang, �an Yuan, and Rongyao

Fu. 2008. Improved recommendation based on collaborative tagging behaviors.

In IUI 2008. ACM, 413–416.

Short Research Paper SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1176

http://www.cs.cmu.edu/~norii/pub/github-ctr.pdf

	Abstract
	1 Introduction
	2 Repository Recommendation with User Language Preference
	2.1 Matrix Factorization
	2.2 User Language Preference Regularization
	2.3 Preference Representation

	3 Experiments
	3.1 Experimental Settings and Datasets
	3.2 Baseline Methods
	3.3 Experimental Results

	4 Conclusions
	References

