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ABSTRACT
It is crucial for query auto-completion to accurately pre-

dict what a user is typing. Given a query prefix and its
context (e.g., previous queries), conventional context-aware
approaches often produce relevant queries to the context.
The purpose of this paper is to investigate the feasibility of
exploiting the context to learn user reformulation behavior
for boosting prediction performance. We first conduct an
in-depth analysis of how the users reformulate their queries.
Based on the analysis, we propose a supervised approach to
query auto-completion, where three kinds of reformulation-
related features are considered, including term-level, query-
level and session-level features. These features carefully cap-
ture how the users change preceding queries along the query
sessions. Extensive experiments have been conducted on the
large-scale query log of a commercial search engine. The ex-
perimental results demonstrate a significant improvement
over 4 competitive baselines.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-

tion Search and Retrieval.

General Terms
Algorithms, Experimentation, Performance.

Keywords
Query auto-completion; Query reformulation.

1. INTRODUCTION
Most of the modern search engines provide the query auto-

completion service to help users formulate their queries while
they are typing in search boxes. Such service is especially
helpful for mobile phone users because entering keywords on
small touch screens is time-consuming. Prevalent methods
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on query auto-completion1 utilize search logs to generate
suggested completions [2, 29, 30]. For an input prefix, the
methods extract those queries with matched leading charac-
ters from the logs as candidates. Since the given prefix could
be short and ambiguous, the number of the candidates might
be extremely large. Existing methods mostly rank the can-
didates by their popularity in the logs. Consequently, less
popular queries are harder to predict.

A possible solution to the ranking problem is to exploit
query context such as previous queries and click-through
data in the same session2. The idea is reasonable since dis-
ambiguating the user’s search intent by context has been
studied extensively in query suggestion [5,9,16,25,26]. Query
suggestion is closely related to query completion. The ma-
jor difference is that it has got no partial input, i.e., the
prefix. In general, if the outputs coming from query sug-
gestion match the prefix, they can also be regarded as the
suggested completions. For a given prefix and its context,
conventional context-aware methods focus mainly on rank-
ing the candidates according to the similarity or the depen-
dency between the candidate and the given context. For
example, some works rank the candidates based on their
similarity to the recent queries [2] or their occurrence with
previous queries [17]. Some works [16] model query depen-
dencies along the sessions, by which the candidates whose
contexts are more similar to the given context will be ranked
higher. The work [25] further clusters relevant queries with
common click-through data into concepts. Query depen-
dency is then transformed to concept dependency. Despite
such methods have shown their effectiveness in producing
relevant queries to the given context, query completion is
required to accurately predict what the user is typing.

Take a query session obtained from a commercial search
engine log as an example: stomach sounds → irritable bowel
syndrome → cramps stomach. Suppose the last query is the
intended query. The prefix is c. Its preceding two queries
serve as the context. Many relevant queries are generated
from conventional context-aware methods such as colon can-
cer symptoms (from [2]), celiac disease (from [16]), and colon
cancer (from [25]) in our experiments. Although the sug-
gested queries are conceptually relevant to the context, the
problem becomes more challenging when the goal is to pre-
dict the actual query cramps stomach. Some works take into
account other factors for pursuing better approximation in

1Query auto-completion is hereinafter referred to as query
completion for simplicity.
2A query session is a sequence of queries with the same
information need.



prediction such as temporal dynamics [30, 32] and demo-
graphics [29,33]. Different from ours, they do not utilize the
context information. One possible way to boost the predic-
tion performance by context is carefully investigating how
the users refine their queries to get more satisfactory results.
If the system gets to know the how, it would be capable of
predicting the potential query the user might submit.

In addition to query dependency, context information also
demonstrates how the users reformulate their queries re-
peatedly throughout the search process. The way people
reformulate their queries, or user reformulation behavior,
has been studied as query reformulation strategy in previ-
ous work [6,18]. There are two types of query reformulation
strategies: semantic and syntactic relations. Semantic rela-
tions such as generalization (e.g., lion → animal) and spec-
ification (e.g., computer → mac) originate from linguistics.
Syntactic relations refer to the statistical information about
consecutive queries along the sessions such as term-adding,
term-reuse and the change of query lengths. As the way to
do reformulation expresses how one query is changed to an-
other, to some extent it might be helpful in prediction for
query completion. In the previous example, the user reuses
stomach (appearing in the preceding query) to form the last
query.

Understanding user search behavior benefits various ap-
plications, including query suggestion [10], query classifi-
cation [8] and Web search-result ranking [37]. The work
[31] mines user reformulation activities for query suggestion
but it does not consider the context information, which has
been shown effective in understanding the user’s information
need. Though lots of work has studied query reformulation
strategies, none of them model user reformulation behavior
for query completion. As query reformulation strategies re-
flect how the users refine their queries and query completion
requires accurate prediction of what a user is typing, these
motivate us to investigate the feasibility of exploiting the
context to learn user reformulation behavior for boosting
prediction performance of query completion.

In this paper, we focus primarily on learning user reformu-
lation behavior for query completion. We first conduct an
in-depth analysis of how the users reformulate their queries.
It is expected that if we know how one query is changed
to another, we are able to predict the user’s next intended
query more accurately. Given a prefix and its context to-
gether with a set of candidate queries that start with the
prefix3, the goal of this paper is learning to rank the candi-
date queries so that the top-ranked queries are more likely
to be the query the user is typing. In other words, we want
to predict the intended query that has been partially entered
by the user. The context includes previous queries and their
chick-through data in the same session. As syntactic rela-
tions can be easily identified by observing the queries them-
selves, our ranking model comprehensively considers various
factors that are essential in query prediction, including term-
level, query-level and session-level syntactic features. There
are totally 43 reformulation-related features. Extensive ex-
periments have been conducted on the large-scale query log
collected from a commercial search engine. The experimen-
tal results reveal that the prediction performance can be sig-
nificantly improved based on our model, compared to 4 com-

3In this paper, we focus on the ranking problem only.

petitive baselines. Such improvement is consistent across
different datasets with different session lengths.

In the rest of this paper, we make a brief review on related
work in Section 2. Based on a statistical analysis on user
reformulation behavior in Section 3, we describe our prob-
lem and approach to query completion in Section 4. The
experimental results are presented in Section 5. Finally, in
Section 6, we give our discussions and conclusions.

2. RELATED WORK
Query Auto-completion. The query completion task

can be divided into two steps: filtering and ranking. The
former is to generate candidate queries or phrases that start
from the given prefix. The latter is to sort the candidates
so that the top-ranked ones are more likely what the user
intends to input. Most works on query completion extract
candidates from query logs. On the contrary, Bhatia et al. [4]
utilized a document corpus to extract a set of candidate
phrases and proposed a probabilistic model to select those
highly correlated to the prefix as the suggested completions.
The first step (filtering) needs to address two issues, includ-
ing speed and error-tolerance. Chaudhuri et al. [11] captured
input typing errors by calculating edit distance and then
proposed algorithms for auto-completion based on n-gram
and trie traversal techniques. Bast et al. [3] designed an in-
dexing structure for speeding up the query process and sav-
ing space, compared to other compressed inverted indices.
Once the candidates are generated, they can be ranked by
manifold approaches for various applications such as Web
search [2] and product search [11].

The second step emphasizes how to accurately select what
the user is typing from the pool of the candidates. An in-
tuitive way is to rank the candidates by their popularity in
the logs; however, less popular queries will become harder
to predict. White et al. [35] proposed a real-time query ex-
pansion model to produce new expansion terms and update
following terms to reflect potential completions. To make
a better approximation in prediction, Bar-Yossef et al. [2]
regarded the user’s recent queries as the context. Due to
the sparseness problem of the query logs, they applied the
query expansion technique to augment the candidate and
the context. The candidates were then ranked according
to their similarity to the context. Some works utilize tem-
poral dynamics to estimate query frequency more precisely.
Shokouhi et al. [30] presented a time-sensitive approach to
rank the candidates according to their expected popular-
ity or frequencies. Strizhevskaya et al. [32] also predicted
the frequency of the candidate by modeling their frequency
trend in the past. Shokouhi et al. [29] took personalization
into account. They learned personalized rankers based on
user age, gender, location, and search history.

Our solution differs from these works in that we try to
model user reformulation behavior based on the given con-
text. Although the work [31] also mines user reformulation
activities for query suggestion, it does not consider context
information.

Query Suggestion. Query suggestion, which draws much
attention in IR, is closely related to query prediction, but the
goal is much more different. The query suggestion methods
focus on finding relevant queries to preceding queries, in-
stead of finding the query that will be actually submitted
by the user. Since previous work on context-aware query



suggestion might suggest the intended query that the user
is typing, it could be regarded as our related work.

With the query session and click-through data as the con-
text, there are many ways to generate suggested queries such
as association rules [14], measuring the similarity among
queries [15,36] and query clustering [10,25]. Huang et al. [17]
and Fonseca et al. [13] sought for the queries having high
frequency of co-occurrence with the current query4 in the
sessions. Jones et al. [22] extracted the queries often adja-
cent to the current query. Boldi et al. [5] built a query-flow
graph in which edges connected the query pairs submitted
together. Based on the click-through data, those queries
that were analogous to the user’s preceding queries were
treated as the suggested queries. Cao et al. [10] and Liao et
al. [25] made use of click-through data to build a bipartite
graph and clustered queries according to the graph. Mei et
al. [26] applied the idea of random walk to the click-through
bipartite graph for finding relevant queries. Considering the
whole query sessions as the contexts, He et al. [16] and Cao
et al. [9] adopted the variable order Markov model and the
hidden Markov model. They modeled the transition proba-
bilities between queries.

Some context-aware query suggestion methods further cope
with the problems of data sparseness and new queries when
using search logs. For sparse data, He et al. [16] allowed the
context information to be partially matched, making the
suggestion method more flexible and robust. Liao et al. [25]
grouped queries into various concepts. Ozertem et al. [27]
and Santos et al. [28] built a machine learning framework
and applied ranking models to rate queries which were pro-
jected into a feature space. The features considered included
query co-occurrences and some simple query reformulation
strategies [27]. We also handle the two problems. Our solu-
tion differs from these works in that we focus on query com-
pletion and abundant reformulation-based features, which
are potentially beneficial to query prediction.
Query Reformulation. Query reformulation is the pro-

cess of refining preceding queries to get better results. Most
of previous work focused mainly on determining the types
of the reformulation strategies [18], learning to predict their
types [12], and understanding how the users reformulate
their queries [18]. They analyzed query reformulation strate-
gies in two major aspects, including syntactic (format) and
semantic (content) analyses. The semantic analysis cate-
gorizes reformulation types into generalization and special-
ization [1]. The syntactic analysis focuses on exploring the
syntactic change between two queries such as adding words,
removing words, and acronym expansion. Boldi et al. [6]
defined four types of query transition. Jansen et al. [19]
and Huang et al. [18] classified query reformulation into 6
and 15 types, respectively. Some works use query reformu-
lation strategies to predict query-term performance. Jones
et al. [21] and Lee et al. [23] determined the effectiveness
of a query term so that the retrieval performance could be
improved by filtering out ineffective terms or including ef-
fective terms. The reformulation behavior and context in-
formation are also usually used to personalize the search re-
sults. White et al. [34] predicted users’ interests with search
context. Jiang et al. [20] captured user’s preference through
mining click-through data and query reformulation. In our

4The current query is the last query a user submitted.
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Figure 1: Average number of query terms in each
position of the sessions from length 2 to 9.

work, we enumerate copious reformulation behavior as ro-
bust features and adopt them for query completion.

3. ANALYSIS OF USER REFORMULATION
BEHAVIOR

In this section, we analyze how users reformulate their
queries, by which we further explain why modeling such re-
formulation behavior can benefit query completion. This
analysis is conducted on the one-week search engine log of a
commercial search engine (from 1 May, 2013 to 7 May, 2013).
The queries in the log are first segmented into sessions with
a 30-minute threshold. Two consecutive queries belong to
the same session if they are issued within the threshold. Af-
ter removing rare queries and single-query sessions, there
are finally 63,661,691 sessions and 5,197,821 unique queries
in total. Note that the setting is consistent with the exper-
iments presented in Section 5.

3.1 Number of Terms in Queries
Since a query session consists of a sequence of queries
〈q1, q2, · · · , qT 〉 submitted by a user, each query submission
qi corresponds to a position i in the session. That is, q1

is the first query submitted or the first position in the ses-
sion. For the sessions with the same length5, we calculate
the average number of query terms in each position. Figure
1 presents its changes along the sessions from length 2 to 9.
It can be found (1) queries in longer sessions tend to contain
more terms. One possible explanation is that queries with
more terms may carry more complex search intent; therefore
users need to reformulate their queries more times; (2) the
average number of query terms increases along the session.
It’s visible from the first position to the second one. The
curve drops near the end of the session.

We further correlate this change with the semantic re-
lations, including specialization and generalization. Intu-
itively, specialization aims to narrow down the search re-
sults, thus extra terms, i.e., more constraints, are expected
to be added into the original query. On the contrary, gen-
eralization may lead to a decrease of term number to relax
restrictions. We randomly sample 1136 sessions from the
dataset, partition them into 2283 consecutive query pairs,

5Session length is the number of queries submitted in the
session.



Table 1: Percentage of specialization and generalization in our labels

Relation
% in Average Median Change of % in

Example
Log Position Position Term Number Relation

Specialization 27.7% 2.9951 2

Increase 84.2% camera → digital camera

Decrease 3.7% perennial plants → stonecrop

Equal 12.1% guest book for party → anniversary party guest book

Generalization 12.2% 3.3122 3

Increase 4.0% airport parking newark → airport parking new york

Decrease 82.5% great lakes auto → great lakes

Equal 13.5% honda blue book → car blue book
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Figure 2: The percentage of sessions whose lengths
are longer or equal to t over different m’s (maximum
term repeat).

and manually label them with specialization, generalization,
or other. Table 1 gives the statistics of our labels, which
show that specialization (27.7%) is about twice as many
as generalization (12.2%). It explains that most of time
queries are reformulated to be longer ones, as shown in Fig.
1. The number of terms increases for most of specialization
(84.2%), while the number decreases for most of general-
ization (82.5%). The average and median of positions for
specification are both smaller than those for generalization.
That is why the average term number increases along the
sessions but drops near the end, as shown in Fig. 1. The
observation implies the combination of query length and po-
sition number as features are important. To some extent,
they might be helpful in detecting the semantic relations of
specification and generalization.

3.2 Term Repeat
This section discusses if people use some terms more fre-

quently in previous queries, they will be also more likely to
use that term again.

For a query qi whose i > 1, i.e., the query not submitted
in the beginning, we examine each term in this query and
count how many times it has been used to form previous
queries 〈q1, · · · , qi−1〉 in the same session. Then we take the
maximum value m as “maximum term repeat” for query qi
if there is at least one term in qi used m times in previous
queries. Given a threshold t, for any session whose length
is longer or equal to t, we extract the first t queries as a
sequence and calculate the “maximum term repeat” value
for the t-th query. We calculate the frequency of “maximum
term repeat” from 0 to t−1 and divide them by the number
of extracted sequences.
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Figure 3: The percentage of queries containing some
identical term to the last query over different posi-
tions.

From Fig.2, we can observe that most reformulated queries
do not share any identical term with their previous queries.
Take t = 2 as an instance. After submitting the first queries,
60.54% of the users do not repeat any term. Furthermore,
if we compare different lengths (i.e., t) of the sessions whose
“maximum term repeat” is zero (i.e., m = 0), it can be found
that when the length of a session increases, the percentage
of repeating previously-used terms also increases. It means
that a reformulated query is more likely to contain the terms
used before when it appears in the latter steps of a session.
We also notice that the percentage decreases as “maximum
term repeat” increases. However, the proportion of refor-
mulated queries containing terms used in all previous t − 1
queries increases, compared to that of t− 2 as shown in Fig.
2. For example, for the curve of t = 5, its percentage value
at m = 4 (t − 1) is larger than that at m = 3 (t − 2). It
indicates that some terms are repeatedly used in all queries
throughout the session.

At last, for a reformulated query which contains a used
term, we would like to know “in which positions” that term
would appear. We again extract the first t− 1 queries from
the sessions whose lengths are equal to t. Then we count
the number of the queries in each position that contain some
identical terms to the t-th queries. Figure 3 shows the per-
centage of queries containing identical terms in each position
within sequences from length 2 to 9. It shows that users tend
to repeat terms used in the nearest query, and may not stick
to the terms in the first query for query reformulation.

3.3 Term Repeat and Clicks
This section discusses if some search results of a query

have been clicked, a user may think the query is “effective”
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Figure 4: The ratio of two conditional probabilities
that if the previous query causes clicks or not, then
the latter query would contain some identical terms,
over different steps of reformulation.

and reuse some terms of it later. We first segment sessions
into consecutive query pairs, and then calculate the proba-
bility of a pair containing some identical terms, given that
the previous query causes clicks or not, respectively. That
is, for a consecutive query pair (qi, qi+1), we calculate

P (S (qi) ∩ S (qi+1) 6= ∅ | ci 6= 0)

and

P (S (qi) ∩ S (qi+1) 6= ∅ | ci = 0) ,

here S (q) and ci represent the term set of query q and the
number of clicks in position i, respectively.

We find that if the previous query causes clicks, the prob-
ability of the latter query containing some identical terms
with the previous one is 36.06%. If the previous query does
not lead to any clicks, the probability of the latter query
containing the same terms is 50.54%. The result shows that
if a query does not cause any clicks, its term would be reused
probably later. It can be explained: if a query causes clicks,
then the user’s search intent may somewhat be satisfied, and
some other terms will be considered in the next query; on
the contrary, if a query does not cause any clicks, the user
may stick to some terms while replacing some with others.

Then we calculate the ratio of these two values

P (S (qi) ∩ S (qi+1) 6= ∅ | ci 6= 0)

P (S (qi) ∩ S (qi+1) 6= ∅ | ci = 0)

for each position transition to examine its change through-
out the session. From Fig. 4, we find that ratio is relatively
low at the first step of reformulation, i.e., repeating terms
at the first step of reformulation is more dependent to the
clicked result of the first query than that at other steps of
reformulation.

Next, we calculate the probability of previous query caus-
ing clicks, given that a query pair contains common terms
or not, respectively. We find that if the query pairs con-
tain some identical terms, the probability that the previous
query causes clicks is 43.4%. If the query pairs do not con-
tain any term in common, the probability that the previous
query causes clicks is 57.7%. We also calculate the ratio of
the two probabilities for each position transition throughout
the whole sessions. The results indicate that the dependence

between repeating terms and clicks on the previous query
decreases when the number of reformulations increases.

3.4 Discussions
Previous statistical analyses show that there are several

hidden reformulation patterns users might potentially fol-
low when interacting with a search engine. Such findings
provide useful clues for query completion methods to more
precisely predict what the user is typing. For example, Fig.
1 shows that the number of query terms varies according
to how many reformulations the user has performed. Thus,
query length may change for different position numbers. In
general, a longer query would be recommended in the be-
ginning of the session. Figures 2 and 3 explain how the
users choose the terms for a new query. Their decisions to
term-adding, term-keeping and term-removing are often re-
lated to recent queries, instead of the original query, i.e., the
first query. To some extent, such decisions also determine
the similarity between consecutive queries. Figure 4 further
tells us that whether a query causes clicks or not affects if
its terms will be reused later. In general, the terms appear-
ing in the recent queries that do not cause any clicks would
have a better chance to be included in the new query. Over-
all, these reformulation patterns carefully capture how the
terms are used and how the term-usage is related to session
length, query length, number of reformulations and click-
through data, which show their good potential for boosting
the prediction performance in query completion.

4. QUERY AUTO-COMPLETION WITH
REFORMULATION

Formally, a search session is defined as a sequence of queries
〈q1, q2, · · · , qT 〉 issued by a single user within a time inter-
val. A query is composed of a set of terms S(qi). Each
query qi has corresponding timestamp ti (the time issued)
and click information ci (the number of clicks for qi). Sup-
pose a user intends to enter qT but only inputs x in the
search box, where x is a prefix of qT . 〈q1, q2, · · · , qT−1〉 is
regarded as the query context. We want to predict qT for
query completion. Assume there is a set of candidates (or
candidate queries) QT =

{
q′j
}

that are probably issued after
qT−1. Such candidate set can be collected in different ways.
For example, q′j can be the query following qT−1 or the query
following qi (i ∈ {1, · · · , T − 1}) in previous search sessions
(i.e., the query logs). Note that x should be a prefix of q′j .
Given a search session with T − 1 queries and its candi-
date set of queries QT =

{
q′j
}

, our goal is to give a ranking
to each query q′j ∈ QT so that the suggested queries with
higher rankings may be more likely to be qT . In other words,
we would like to estimate a probabilistic-like score positively
correlated to the probability P (qT = q′j | 〈q1, q2, · · · , qT−1〉).

We propose a supervised approach here. Three kinds of
reformulation-related features that possibly affect the pre-
diction accuracy are taken into account. These features
capture how the user changes preceding queries along the
session. Considering different levels of query reformulation,
we divide them into three categories: term-level features,
query-level features, and session-level features, as shown in
Table 2. There are 43 features in total. With the train-
ing data, collected from the real search engine log, almost
any learning-to-rank algorithm can be applied to obtain our
ranking model. We choose LambdaMART [7] because Lamb-



Table 2: Defined reformulation behavior and the formulas for calculating reformulation features.

Category Feature Class Description Formulas

Term
Term Combination

(16 features)

number of terms | ∪T
i=1 S(qi)| , |S(qT−1) ∪ S(qT )|

term keeping | ∩T
i=1 S(qi)| , |S(qT−1) ∩ S(qT )|, sgn(|S(qT−1) ∩ S(qT )|)

term adding |S(qT )− S(qT−1)|, sgn(|S(qT )− S(qT−1)|)
term removing |S(qT−1)− S(qT )|, sgn(|S(qT−1)− S(qT )|)
number of used terms |Sused(qT )| , |S(qT )− Sused(qT )|
ratio of used terms |Sused(qT )|/|S(qT )| , 1− |Sused(qT )|/|S(qT )|
number of repeat times Rep(qT ), Rep(qT )/T , Rep(qT )/|S(qT )|

Query

Query Similarity
(10 features)

cosine similarity simcos(qT−1, qT )

average cosine similarity 1
T−1

∑T−1
i=1 simcos(qi, qi+1)) , 1

T−1

∑T−1
i=1 simcos(qi, qT ))

trends of cosine similarity simcos(qT−1, qT )/ 1
T−2

∑T−2
i=1 simcos(qi, qi+1))

simcos(qT−1, qT )/ 1
T−2

∑T−2
i=1 simcos(qi, qT ))

Lev. similarity simLev(qT−1, qT )

average Lev. similarity 1
T−1

∑T−1
i=1 simLev(qi, qi+1)) , 1

T−1

∑T−1
i=1 simLev(qi, qT ))

trends of Lev. similarity simLev(qT−1, qT )/ 1
T−2

∑T−2
i=1 simLev(qi, qi+1))

simLev(qT−1, qT )/ 1
T−2

∑T−2
i=1 simLev(qi, qT ))

Query Length
(6 features)

number of terms |S(qT )|
average number of terms 1

T−1

∑T−1
i=1 |S(qi)| , 1

T

∑T
i=1 |S(qi)| , |S(qT−1)|+ |S(qT )|

trends of term number |S(qT )|/ 1
T−1

∑T−1
i=1 |S(qi)| , |S(qT−1)| − |S(qT )|

Query Frequency
(2 features)

pairwise frequency P ((qT−1, qT )|qT ), P ((qT−1, qT )|qT−1)

Session

Click-through Data
(6 features)

previous clicks cT−1 , sgn(cT−1)

number of effective terms |Ceff(qT )|
ratio of effective terms |Ceff(qT )|/T , |Ceff(qT )|/|S(qT )| , |Ceff(qT )|/|Sused(qT )|

Time Duration
(2 features)

average time duration 1
T−1

∑T−1
i=1 (ti+1 − ti)

trends of time duration (tT − tT−1)/ 1
T−2

∑T−2
i=1 (ti+1 − ti)

Position Number
(1 feature)

position in the session (T )

daMART is a boosted version of the LambdaRank algorithm
improving overall ranking performance [7].

4.1 Term-Level Reformulation Features
A query qi in a session consists of a set of terms S(qi).

Users might add or remove terms between two consecutive
queries. The term-level features try to measure the effective-
ness of a term used in a query. The effectiveness of a term
can be explained in several ways such as the probability to
add the term, delete the term or re-use the term, and the
probability to cause clicks on the search results.

Term Combination: For a query qi and its preceding
query qi−1 in a session, there are four possible term-usage
ways: (1) adding terms only; (2) removing terms only; (3)
adding terms and removing terms concurrently while some
terms are kept; and (4) adding terms and removing terms
concurrently while no term is kept. We encode types of term-
usage as categorical features (i.e., four binary features). In
Table 2, sgn(x) is a function calculating the binary features.
If x > 0, then sgn(x) = 1. If x = 0, then sgn(x) = 0.

Set operations among term sets S (qi) may measure some
statistical information. The union of terms learns how many
different terms are used throughout the session, which may
imply how much information conveyed by user information
need. The intersection of terms learns how many terms kept
by the user, reflecting how much unchanged information dur-
ing the session. Besides, it is expected that a term is likely

to be used again if it has been used recently in the session.
We capture such feature by measuring how often the user
reuses previous terms when reformulating a new one. In Ta-
ble 2, we remove those terms not appearing in previous T−1
queries from S (qT ) to form Sused (qT ). For every term in
qT , function Rep (qT ) counts its times of occurrence in pre-
vious t − 1 queries. These counts are summed up and then
normalized by the length of the session or the number of
terms in qT .

Note that from the analyses in Section 3.2, “maximum
term repeat” is highly related to the term-level features.
Larger numbers of “maximum term repeat” could increase
the size of intersection set. Smaller numbers of “maximum
term repeat” could increase the size of union set.

4.2 Query-Level Reformulation Features
These features are about how users reformulate queries

without the consideration of what terms are used.
Query Similarity : As each reformulated query may be

syntactically similar to its preceding query under the same
information need, the similarity between queries could be
helpful in determining whether a query is a suitable reformu-
lation of another. In Table 2, term-based cosine similarity
(denoted as Simcos(qi, qj)) and Levenshtein distance (de-
noted as SimLev(qi, qj)) [24] are used as similarity metrics,
which measure similarity based on term- and character-level
representations, respectively. First we compute the Leven-



shtein distance between qT and its preceding query qT−1,
and then we compute the average similarity of the query
pairs in the whole session in two ways: (1) the average sim-
ilarity between qT and each of the previous T − 1 queries;
(2) the average similarity of consecutive T − 1 query pairs.
At last we calculate the ratio of the similarity between the
reformulated query and its preceding one to the average sim-
ilarity mentioned earlier.

Query Length: Under the same search intent, we assume
that the number of terms used in a query throughout a ses-
sion does not change rapidly. We compute average number
of terms in a query for a session. The ratio of term number
in qT to that in previous T − 1 queries is calculated in order
to show the degree of change in the number of terms, that
is, the trend of term numbers. The larger ratio value means
that the last query is much longer than average length of
previous queries.

Query Frequency : Search logs can provide useful infor-
mation such as the co-occurrence of queries that benefits
query suggestion. Here we take the relative frequency of
(qT−1, qT ) to all the queries immediately following qT−1 and
preceding qT , respectively, as features.

4.3 Session-Level Reformulation Features
The session-level features capture how users perform re-

formulations along the sessions without considering what
queries or terms they exactly submit.

Position Number : Since a session is a sequence of queries,
the position of a query in the session determines how many
times a user has reformulated the queries. Our analyses
given in Section 3.1 show that users’ reformulation strate-
gies may change over different positions. The number of
position is, therefore, adopted as a feature in our work.

Click-through Data: From Fig. 4, we know that click
information in a session is related to term-usage. If a new
term is added to a query and the new query does cause user
clicks on the search results, then the term is more likely to
be effective. With the click-through data, we can calculate
how many search results of a query are clicked by the user.
In Table 2, ci is the number of clicks in position i. For
each term in qT , if it has been used in some of the previous
queries, we count the number of clicks on the search results
of that query and then sum up these counts by Ceff (qT ). It
is further normalized by the session length T , the number
of terms in qT , and the number of terms in qT that have
appeared previously Sused(qT ), respectively.

Time Duration: The duration of time users stay on the
search results for a query might affect how they reformulate
next query. The features include the average time difference
of T − 1 pairs of consecutive queries, and the ratio of the
time difference between qT−1 and qT to the average time
difference of the previous T − 2 pairs.

5. EXPERIMENTS
In this section, we conduct extensive experiments on a

real, large-scale dataset to verify the performance of our
ranking model in predicting the user’s intended query.

5.1 Datasets and Experimental Settings
Our experimental data comprises all of the queries sub-

mitted to a commercial search engine from 1 May, 2013 to
7 May, 2013. The query log is first segmented into sessions
with a 30-minute threshold as the session boundary. We

drop those queries that are misspelled or appear less than
10 times in the whole log. We then discard the sessions that
contain only one query since context-aware methods need
at least one preceding query as the context. After removing
rare queries and single-query sessions, there are 63,661,591
sessions and 5,197,821 unique queries in total. For each ses-
sion with T queries, we treat the last query qT as the ground
truth, that is, the intended query we want to predict. The
preceding queries 〈q1, q2, · · · qT−1〉 and their click-through
information serve as the context.

The cleaned data is further partitioned into two sets. The
first 4-day data is used for training. The remaining 3-day
data is for testing. Finally, we collect 35,926,476 sessions
submitted before 5 May, 2013 as our training set. We use
query frequency to generate candidate set. After filtering
out those not starting from the prefix, the top-10 queries
ranked by frequency form our candidate queries. For exam-
ple, if the prefix is a, the candidates are the top 10 high-
frequency queries starting with a in the training set. To
get the training set, we remove the sessions whose ground
truths (or answers) are not included in the corresponding
candidate sets; that is, we guarantee the candidate set con-
tains the answer. After filtering, there are 4,900,363 sessions
in the testing set. The prefix is set to be the first character
of qT . Note that most of our settings are consistent with
previous work, including the removal of rare queries [29],
the way to generate candidates [29], how to determine the
prefix [2], and the dropping of the cases with no answers in
the candidate set [29].

To evaluate performance on sessions with different lengths,
the testing sessions are divided into three datasets, includ-
ing “Short Sessions” (2 queries), “Medium Sessions” (3 to 4
queries) and “Long Sessions” (5 or more queries). Besides,
we tune our LambdaMART model with parameters of 1,000
decision trees across all experiments.

5.2 Competitive Baselines
To compare our approach with others, the following con-

ventional methods are adopted as the baselines:

• Most Popular Completion (or MPC). MPC is a Maxi-
mum Likelihood Estimation approach. It simply ranks
candidates by their frequencies.

• Hybrid Completion (or Hyb.C). Hyb.C proposed in [2]
is a context-sensitive query completion method, which
considers both context information and the popular-
ity. The ranking of a candidate is determined by lin-
ear combination of its popularity (i.e., MPC) and its
similarity to recent queries.

• Query-based VMM (or QVMM). QVMM proposed in
[16] is a context-aware query suggestion method. It
learns the probability of query transition along the ses-
sions with the variable memory Markov model, which
is a extension of Markov chain model.

• Concept-based VMM (or CACB). CACB proposed in
[25] is a concept-based context-aware query sugges-
tion method. It clusters queries into several concepts
to overcome the sparseness problem. After mapping
each query to its corresponding concept, CACB tries
to model the concept transition, instead of query tran-
sition, with variable memory Markov model.



Table 3: The performance of 5 methods in whole testing set and three subsets. All improvements of our
method against the MPC method are significant differences at 95% level in a paired t-test.

Dataset Measure MPC Hyb.C [2] QVMM [16] CACB [25] Our Approach

MRR 0.6415 0.6604 (+2.95%) 0.7137 (+11.25%) 0.7112 (+10.86%) 0.7433 (+15.87%)

Whole Testing Set
SR@1 0.4756 0.5017 (+5.50%) 0.5658 (+18.97%) 0.5593 (+17.61%) 0.6095 (+28.16%)

SR@2 0.6410 0.6625 (+3.36%) 0.7349 (+14.66%) 0.7363 (+14.88%) 0.7672 (+19.70%)

SR@3 0.7623 0.7729 (+1.39%) 0.8293 (+8.79%) 0.8305 (+ 8.94%) 0.8474 (+11.16%)

MRR 0.6338 0.6335 (−0.04%) 0.7125 (+12.43%) 0.7074 (+11.62%) 0.7224 (+13.98%)

Short Sessions SR@1 0.4654 0.4633 (−0.45%) 0.5636 (+21.10%) 0.5519 (+18.59%) 0.5794 (+24.49%)

(2 Queries) SR@2 0.6283 0.6310 (+0.43%) 0.7329 (+16.64%) 0.7348 (+16.95%) 0.7450 (+18.58%)

SR@3 0.7575 0.7567 (−0.10%) 0.8291 (+9.46%) 0.8298 (+9.54%) 0.8320 (+9.84%)

MRR 0.6513 0.6906 (+6.04%) 0.7161 (+9.95%) 0.7160 (+9.93%) 0.7654 (+17.50%)

Medium Sessions SR@1 0.4889 0.5443 (+11.33%) 0.5707 (+16.74%) 0.5695 (+16.49%) 0.6420 (+31.32%)

(3 to 4 Queries) SR@2 0.6552 0.6991 (+6.70%) 0.7369 (+12.47%) 0.7368 (+12.44%) 0.7892 (+20.45%)

SR@3 0.7692 0.7928 (+3.06%) 0.8294 (+7.83%) 0.8305 (+7.98%) 0.8626 (+12.15%)

MRR 0.6522 0.7076 (+8.49%) 0.7130 (+9.32%) 0.7162 (+9.82%) 0.7842 (+20.24%)

Long Sessions SR@1 0.4885 0.5707 (+16.83%) 0.5631 (+15.27%) 0.5676 (+16.20%) 0.6656 (+36.27%)

(5 or more Queries) SR@2 0.6632 0.7149 (+7.79%) 0.7394 (+11.49%) 0.7422 (+11.91%) 0.8139 (+22.72%)

SR@3 0.7674 0.7974 (+3.91%) 0.8300 (+8.16%) 0.8335 (+8.61%) 0.8798 (+14.65%)

5.3 Evaluation Metrics
With the ground truth qT , we can evaluate the quality of

query prediction by two metrics, including mean reciprocal
rank (MRR) and success rate at top-k (SR @ k). MRR is
the multiplicative inverse of the rank of the actual query qT
in the ranking list. Given the testing set S, the MRR [2] for
an algorithm A is defined as follows:

MRR(A) =
1

|S|
∑

(C,qT )∈S

1

hitrank(A,C, qT )
,

where C represents the context of a session (i.e., the preced-
ing queries and click-through information); qT is the ground
truth. The function hitrank(A,C, qT ) computes the posi-
tion of the ground truth in the ordered list ranked by the
algorithm A. The success rate at top-k (SR @ k) denotes the
average percentage of the actual queries that can be found
in the top-k queries over the testing data. Both of them
are widely used for the task whose ground truth is only one
instance such as query completion.

5.4 Overall Performance
Table 3 shows the experimental results in MRR and SR@k.

Comparing the baseline methods, we find that all of previ-
ous methods perform better than frequency-based MPC in
most cases. The difference in MRR and SR@k between the
Hyb.C method and the MPC method is small for short ses-
sions. The reason might be because the shorter sessions
cannot provide sufficient context information so that the
Hyb.C method fails to match the query to the context. On
the other hand, while the length of a session increases, the
Hyb.C method performs better accordingly. The QVMM
method outperforms the Hyb.C method since QVMM mod-
els query transitions, rather than the similarity between two
consecutive queries. It is not necessary for two semantically-
relevant queries to have strong query dependency in search.
Similarly, although CACB can deal with the problems of

sparseness and new queries by grouping relevant queries into
a cluster, its performance still approximates to that of the
QVMM method. It is inferred that if a query is conceptually
relevant to the context, it is not necessary to be what the
user intends to type. Hence, the solutions to query sugges-
tion cannot be fully applied to query completion.

Our approach achieves the best performance (compared
with all of the 4 comparative baselines) and significantly out-
performs MPC with progress by 9.84% to 36.27% of SR@k.
It is worth noticing that our approach consistently performs
better when the lengths of query sessions increase. More
context is, therefore, preferable in query prediction. We have
performed significant tests for the improvements of our ap-
proach against MPC using a paired t-test with a significant
level of 95%.

5.5 Feature Analysis
To verify the effectiveness of the features, we inspect cor-

relation between the features and P (qT | 〈q1 · · · qT−1〉). The
standard measurement, Kendall’s tau, is adopted.

Figure 5 shows the absolute values of correlation for all of
the 43 features. It can be found that all of the three types
of features, namely term-level, query-level and session-level
features, are quite useful. Obviously, the query-frequency
feature is the most significant one. The feature measures the
dependence between consecutive queries. It explains why
the conventional query prediction (or suggestion) methods
based [16] on query dependence generally have reasonable
performance. Besides, the feature of query length also has
strong connection to query prediction.

Many term-level features are helpful in determining how
a user reformulates a query in term level such as the union
of the terms in a session, if a term stays in the reformulated
query (term-keeping), if a term has ever appeared or not
in preceding queries (number of used terms and number of
repeat times), and the cosine similarity or the Levenshtein
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Figure 5: Absolute values of correlation between the features and relevance. The indices in the parenthe-
ses represent the order of features in Table 2. For example, pairwise frequency (1) represents the feature
P ((qT−1, qT ) | qT ), and pairwise frequency (2) is the feature of P ((qT−1, qT ) | qT−1).

distance between two queries (especially between the latest
two queries).

In the session-level features, the position of a query in a
session is found to be highly related. This observation im-
plies that how users reformulate their queries depends on
how many queries they have submitted before. The click-
through data like the number of clicks for a query has moder-
ate correlation with reformulated queries. The information
about time duration is quite important. This is because the
duration of time a user stay on the search result is often
related to other features such as the number of clicks, the
session length, and the complexity of reformulating a query.

6. DISCUSSIONS AND CONCLUSIONS
In this paper, we propose a supervised approach for query

completion aiming to predict the user’s intended query with
a partial input. Compared to conventional context-aware
methods that directly model the term similarities or the
query dependencies, our approach tries to learn how users
change preceding queries, i.e., user reformulation behavior,
along query sessions. The results of extensive experiments
show that our methods can significantly improve the per-
formance of the existing context-aware query completion
and suggestion methods. Such improvement is consistent
across different datasets with different session lengths. This
is because (1) The reformulation-based model requires less
training data. The number of reformulation features is only
dozens or hundreds; (2) The reformulation-based model con-
siders different user behavior for query reformulation. To
capture such reformulation behavior, several kinds of fea-
tures are taken into account such as session-related, query-
related, and term-related features. The results of both the
user behavior analysis in Section 3 and the feature analy-
sis in Section 5.5 support that all of three-type features are
useful and important. Based on the analyses and experi-
mental results, we give an insight into the problems of how
users reformulate their queries and why the reformulation-
based features are helpful in query completion. Our future
work includes the incorporation of semantic features into the
model.
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