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ABSTRACT
Conversational artificial intelligence (AI) has been widely applied to
different products and services in the past few years. As a common
engagement channel between customers and businesses, live chat
can benefit substantially from conversational AI. Currently, busi-
nesses spend a tremendous amount of time and money to train and
educate chat agents. The training and educating processes include
providing agents with chat flows, FAQs, and answer templates to
guide chat agents answering customer questions efficiently and prop-
erly. However, creating such training materials for chat agents is
time-consuming. In addition, the materials need to be constantly up-
dated as new services and products are deployed to customers. In this
work, we study the problem of extracting common chat flow from
online customer care chats to enhance question response generation,
with the goal of using them to facilitate chat agent training.
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1 INTRODUCTION
Conversational AI has been widely deployed in different products
and services in industry in the past few years. Google launched Smart
Reply, an email response recommender system that suggests short
replies for 10% of Gmail volume in the Inbox mobile application [4].
Amazon applied a dual encoder network to generate question re-
sponses, which covered more than 70% of customer inquiries in
delivery related issues [11]. In addition to introducing the chatbots
Xiaoice and Rinna in China in 2014 and in Japan in 2015, respec-
tively, Microsoft integrated Cortana, its AI assistant, into most of
the products. These conversational AIs strengthen the communica-
tion, the connection, and the engagement between customers and
businesses.
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Live chat services, as a common customer engagement channel,
not only meet customers’ basic requirements but also give businesses
a way to increase satisfaction, loyalty, and advocacy from customers.
According to [16], 90% of customers consider live chat helpful and
63% of them prefer to return to a website that offers a live chat
service. Therefore, a key to the survival and success of businesses
is to improve live chat qualities. Conventionally, to best serve cus-
tomers, the chat agents are expected to be extremely knowledgeable
about inventories, services, and even website navigation. Therefore,
businesses have to spend a tremendous amount of effort and money
on training and educating chat agents, especially the new agents.
In the training process, well designed guidelines and templates are
the major resources to assist agents to answer customer questions
properly and efficiently. Unfortunately, customer questions evolve
over time as new products and services are deployed. The solutions
to the previous tasks may also change. Therefore, it is challenging to
come up with approaches that can automatically generate and update
solutions to customer questions.

Historical chat logs register interactions between customers and
chat agents. These logs are valuable sources for generating meaning-
ful solutions for live chat training in that they allow us to tap into the
wisdom embedded in the chat interactions between customers and
agents. We can leverage this wisdom to mine potential solutions to
customer questions. Each chat involves one customer and one chat
agent. Table 1 shows an example of a raw chat dialogue. The chat
dialogue is composed of 12 sequential chat turns. Each turn refers
to a message conveyed by either an agent or a customer. The chat
starts with greetings between a customer and a chat agent. Then the
customer expresses his need to arrange a late payment, followed by
an acknowledgement from the agent and the corresponding payment
arrangement operations. At the end of the chat, there are apprecia-
tions exchanged between the customer and the chat agent. As the
example shows, historical chats contain customer inquiries and cor-
responding agent actions. Learning the relationships between them
allows us to generate appropriate solutions to customer questions.

There are several challenges in extracting the relationships be-
tween customer inquiries and the corresponding agent actions. First,
customers use different words to express the same issue. In addi-
tion, the adopted construction (e.g., the sentence structure) of the
expression also vary from one customer to another. Second, the true
intention of a customer is often expressed and clarified in multiple
chat turns. Third, the chat messages related to the agent actions do
not always immediately follow customer questions. For example,
the agent may repeat customer inquiries as confirmations or update
the customer on his/her progress as the agent works on a resolution.
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Table 1: An example of a raw chat dialogue between a customer and an agent. A and C represent agent and customer, respectively.
For privacy reasons, all agent and customer names are replaced by Bob and Alice. Dates are replaced by MM/DD/YYYY. Device
makes and models are replaced by device-make and device-model, respectively.

Turn Id Dialogue content
1 A: good morning thank you for chatting with XXX my name is Bob how may I help you today?
2 C: I want to set up a late payment
3 A: Hi Alice
4 A: I understand that you need to set a late payment on the account
5 A: no problem i am here to help you with that and will be more than glad to assist you
6 A: please allow me a moment while I get access to your account right away.
7 A: Alice what date would you like to set for payment?
8 C: MM/DD/YYYY
9 A: thank you for that information

10 A: Alice I completed the process and set the payment for MM/DD/YYYY
11 C: ok thank u
12 A: you are so welcome.

Table 2: List of symbols

Symbol Description
ti a chat turn from either a customer or a chat agent
Di a chat dialogue i composed of a sequence of chat turns <t1 , t2 , ...,tm>
sdi a sub-sequence of turns in Di
ms the score of the best alignment between two chats

iloc , jloc the ending positions of the best alignment
s(ti , tj ) the similarity between turn ti and turn tj

h the turn similarity threshold
bi, j the reward for appending turns ti and tj to previous sub-sequences
p the penalty for skipping turns in chat alignments

xi /yi a sequence of words as inputs/outputs of a training instance
N total number of the training instances

These issues make it challenging to pinpoint customer questions,
agent actions, and the relationships between them.

To address the above challenges and generate appropriate and
meaningful question solutions, we first extract common chat sub-
sequences through pairwise chat comparisons. The extracted sub-
sequences incorporate common chat flow in the chats. Next, we
apply a generative sequence-to-sequence model to generate ques-
tion responses. The contributions of this work are two-fold: (1) we
propose identifying common chat flow by extracting partial align-
ments between pairwise chat dialogues, and (2) we apply a hierar-
chical sequence-to-sequence generative model to generate question
responses as potential solutions.

2 METHODOLOGY
In this section, we discuss the methodology to generate responses
based on input customer questions. Our proposed approach con-
sists of three stages, including dialogue cleaning, common chat
flow extraction, and response generation. In Section 2.1, we discuss
dialogue cleaning, which filters out the majority of uninformative
chat messages and keeps the essential information. To extract the
common flow of conversations in live chat, we propose using di-
alogue alignment to identify the common chat sub-sequences in
Section 2.2. Finally, we discuss our approach of response generation
by incorporating the common chat flow in Section 2.3. Table 2 lists
the notations we use in this paper.

2.1 Dialogue Cleaning
As shown in Table 1, some turns in the dialogue are greeting mes-
sages (e.g., turns 1 and 3), empathy/reassurance messages (e.g., turns
5 and 6), and appreciation messages (e.g., turns 9, 11, and 12). In

addition, apology and branded closing messages are also prevalent
in customer care chat. These emotion, etiquette padding turns are
essential for good customer care but provide no information to help
us identify agent actions. In this paper, we refer to these turns as
“uninformative”. Removing these uninformative turns makes the chat
interactions more concise without altering the general understanding
of the conversation. Therefore, the tasks of dialogue cleaning focus
on identifying the uninformative turns and removing them from the
dialogues.

We employ a supervised learning approach and consider iden-
tifying the uninformative turns as a binary classification task. We
manually label a subset of turns from all dialogues to be either in-
formative or uninformative. These labeled turns are used as training
instances to learn a classifier. After training, we apply the classi-
fier to the remaining turns to infer their statuses. Turns labeled as
uninformative are filtered out from the original chat.

A classifier can be sensitive to the training distribution [1]. Ran-
domly sampling the turns from all dialogues often results in an
unbalance training set, especially when the sample space is large.
This is mainly because different numbers of turns sharing similar
syntax and semantics. To mitigate this issue, we first cluster all
turns into K groups with mini-batch K-means [14] based on their
distributed representations trained by paragraph2vec [7]. The opti-
mal value of K is determined by the Elbow justification [6]. Turns
are proportionally sampled from clusters and manually labeled as
the training data. A binary classifier is then trained and applied to
predict the labels of the remaining unlabeled turns (See Section 3.2
for model selection). Finally, all labeled and predicted uninformative
turns are filtered out, thereby constructing the clean chats.

2.2 Common Chat Flow Extraction
Even though some chat dialogues involve the same types of customer
inquires, variations of word choices and sentence structures can
increase the difficulty of learning the relationships between customer
questions and agent actions in response generation. Hence, there
is a necessity to extract common dialogue sub-sequences concisely
reflecting the common chat flow. In light of this, we identify common
dialogue sub-sequences via pairwise dialogue comparisons, which
aims to extract the sub-sequences from two dialogues that are the
most similar to each other.

Given two dialogues D1 and D2, modeled as two sequences of
turns <t11 , t

1
2 , · · · , t

1
m> and <t21 , t

2
2 , · · · , t

2
n>, respectively, the goal

of common dialogue sub-sequence extraction is to identify two
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dialogue sub-sequences, sd1 from D1 and sd2 from D2, such that the
similarity between them is optimized in terms of chat semantics and
flow. Here we assume the quality of an alignment can be represented
as the sum of the similarities between aligned turn pairs deducted by
the penalties of skipped turns in two sub-sequences.

Algorithm 1: Common dialogue sub-sequence extraction

Input: dialogue 1: D1 =< t 11 , t
1
2 , ..., t

1
m >,

dialogue 2: D2 =< t 21 , t
2
2 , ..., t

2
n >,

the penalty for turn skip p, and the similarity threshold h.
Output: dialogue sub-sequences sd1 and sd2.

1 Initialization: DP = 0, ms = 0, iloc = 0, jloc = 0;
2 for i in range of |D1 | do
3 for j in range of |D2 | do

//Reward for appending turns t 1i and t 2j ;
4 bi, j = tan(s(t 1i , t

2
j ) − h);

5 DPi, j =max (DPi−1, j−1+bi, j , DPi, j−1−p, DPi−1, j −p, 0);
//Update if better alignment found;

6 if DPi, j > ms then
7 ms = DPi, j ;
8 iloc = i ;
9 jloc = j ;

10 Backtrack from iloc and jloc to find sd1 and sd2;
11 Return sd1 and sd2;

Based on dynamic programming, Algorithm 1 summarizes this
process of identifying sd1 and sd2. DPi, j indicates the highest score
among all partial alignments ending with either t1i or t2j . The algo-
rithm aims to correctly fill the whole table DP and find the position
(iloc , jloc ) with the highest scorems. Note that a higherms indicates
a longer and closer alignment. Since the task of computing DPi, j has
the optimal substructure, the computation of Di, j only depends on
Di−1, j−1, Di−1, j , and Di, j−1. More precisely, updating DPi, j from
DPi−1, j−1 involves appending t1i and t2j to the aligned sub-sequences
identified at (i − 1, j − 1). We first calculate the reward of appending
these two turns, bi, j = tan

(
s(t1i , t

2
j ) − h

)
, to be added into DPi−1, j−1.

The reward bi, j is a function of the similarity s(t1i , t
2
j ) between the

two turns with a similarity threshold h. The function tan is chosen
as the reward function because of its smoothness and the ability to
reward/penalize extremely high/low similarities. Therefore, DPi, j
increases from DPi−1, j−1 by a positive reward when t1i and t2j are
similar. On the other hand, dissimilar turns lead to a negative reward
and decrease the score. Another situation happens when t1i or t2j is
skipped in the alignment. The score DPi−1, j or DPi, j−1 is deducted
by a penalty score p for the skipping. As shown in the fifth line
of Algorithm 1, DPi, j is updated to the largest value of the three
potential options. In addition, if DPi, j becomes less than 0, DPi, j
will be reset to 0, indicating that (i, j) is a new starting position to
find the best partial alignment between the two dialogues.

Table 3 shows a toy example of two dialogues regarding late
payment and Table 4 shows their corresponding turn-level pairwise
similarities based on their latent representations. Based on these two
dialogues, Figure 2 shows the computation of DP matrix according
to Algorithm 1 with different similarity thresholds. The parameter
settings are discussed in Section 3.3. In addition to the DP scores,
we also highlight the path giving the best alignment. Through back-
tracking, we can identify the two sequences of the turns providing

the best partial alignment between D1 and D2; i.e., < t11 , t
1
2 , t

1
3 , t

1
5 >

and < t21 , t
2
2 , t

2
3 , t

2
4 >.

2.3 Response Generation
Incorporating the common chat flow together with the clean dia-
logues, we apply a generative sequence-to-sequence model to learn
the dependency between turns. The objective function of our model
is shown in Equation 1.

J (Θ) =
1
N

N∑
i=1

P(yi |xi ) (1)

where Θ is a set of parameters defining the model; xi , as inputs, is a
sequence of words; yi , as corresponding outputs, is also a sequence
of words; N is the number of training instances. The goal is to
maximize J (Θ) through considering the relationship between the
previous chat turns, xi , and the next chat turn, yi .

Figure 1 shows the network structure. It is in the form of an
encoder-decoder architecture. The encoder network ingests incom-
ing chat contents, and the decoder network generates outgoing re-
sponses. More precisely, the turn-level encoder encodes the word
sequence information in a chat turn and updates the internal recur-
rent state. After the last word has been processed, the recurrent state
can be considered as a compact order-sensitive encoding of the chat
turn. Given that dialogues are multiple-turn interactions between cus-
tomers and chat agents, a session-level encoder is adopted to further
capture this information. The session-level encoder takes the outputs
of the turn-level encoder as inputs and its recurrent state encodes the
entire interactions in the chat. The decoder takes the session-level
recurrent state as inputs, deciphers the encoded information, and
generates outputs sequentially.

Each training instance, denoted as (xi , yi ), is composed of an
input text xi and an output text yi . The training instances include
the data generated from the cleaned dialogues, and the common
dialogue sub-sequences extracted from pairwise comparisons as de-
scribed in Section 2.2. The goal of incorporating these common sub-
sequences is to slightly change the conditional distribution, P(yi |xi ),
of the text in the dialogue, which optimizes the sequence depen-
dency and consequently reflect the common chat flow. Here we use
an example to demonstrate this process. Consider two dialogues
D1 =< t11 , t

1
2 , t

1
3 , t

1
4 , t

1
5 > and D2 =< t21 , t

2
2 , t

2
3 , t

2
4 > in Table 3, and

two sub-sequences sd1 =< t11 , t
1
2 , t

1
3 , t

1
5 > and sd2 =< t21 , t

2
2 , t

2
3 , t

2
4 >

the sources to generate training instances. Including training in-
stances generated from sd1 and sd2 will decrease the likelihood of
generating less common chat content, t14 , and encourage the genera-
tion of the common chat content, t15 , conditioned on the previous chat
interactions. As shown in the example, incorporating extra training
instances from common chat flow help us generalize the generated
responses.

3 EXPERIMENT
In this section, we first describe the dataset and the performance
of dialogue cleaning in Sections 3.1 and 3.2, respectively. Then we
show the common sub-sequence extraction results in Section 3.3.
Lastly, we show the response generation results in Section 3.4.

3.1 Dataset
In this paper, we use customer care chat logs collected from a large
U.S. cellular service provider over a period of several months. Each
record in the logs corresponds to a customer care chat, where an
example chat dialogue is shown in Table 1. Sensitive and private
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Table 3: Two dialogues about late payment

Turn Id Dialogue content in D1 Dialogue content in D2
1 C: I was wondering if I could arrange late payment C: I want to set up a late payment
2 A: I understand that you would like to setup a payment arrangement A: I understand that you need to set a late payment on the account
3 A: What date do you want to pay? A: Bob what date would you like to set for the payment?
4 C: it is really great. :0 A: Bob I completed the process and set the payment for MM/DD/YYYY
5 A: I completed the process

…ti+1

session-level encoder

turn-level encoder

decoder

…ti

I want I understand

I

I understand …

……

…

To get …

To …

Predicted responses

recurrent state

recurrent state

Figure 1: Network structure of the generative model

Table 4: Pairwise turn similarities between D1 and D2

t11 t12 t13 t14 t15
t21 0.328 0.167 0.109 0.356 0.197
t22 0.371 0.374 0.133 0.192 0.081
t23 0.148 0.328 0.464 0.130 0.135
t24 0.034 0.202 0.049 0.321 0.558

customer information was removed from the chat dialogues prior to
conducting any analysis. The chat content field in each chat registers
how an agent interacts with the customer, including information
related to service issues the customer would like to report as well as
actions the agent performed to resolve the issues. Altogether, there
are about half a million chat records in our data sample.

3.2 Performance of Dialogue Cleaning
To filter out uninformative chat turns, we manually labeled 6,000
chat turns, where 3,000 were labeled as uninformative turns and the
other 3,000 were labeled as informative turns. We used 90% of the
labeled turns as training data. The remaining 10% were withheld as
test data for evaluation.

We experimented with five different classification methods: Lo-
gistic Regression (LR), Support Vector Machine (SVM), Random
Forest (RF), Multilayer Perceptron (MLP), and Gaussian Naïve
Bayesian (GNB). Table 5 shows the classification performances of
the five classifiers1 in terms of precision, recall, F1 score, and accu-
racy. Among the five classifiers, SVM with rbf kernels achieved the
best classification performance. We applied SVM to infer the labels
of unlabeled turns.

1Parameters in these models were tuned through grid search.

Table 5: Classification Performance

Metrics LR SVM RF MLP GNB
Precision 0.89 0.94 0.89 0.94 0.77
Recall 0.89 0.94 0.88 0.94 0.77
F1 0.89 0.94 0.88 0.94 0.77
Accuracy 0.887 0.943 0.883 0.940 0.765

Table 6: An example of the cleaned chat dialogue

Turn Id Dialogue content
2 C: I want to set up a late payment
4 A: I understand that you need to set a late payment on the account
7 A: Alice what date would you like to set for payment?
8 C: MM/DD/YYYY

10 A: Alice I completed the process and set the payment for MM/DD/YYYY

Table 6 shows the cleaned version of the chat example in Ta-
ble 1 after filtering out the uninformative turns. The turns involving
greetings, empathy/reassurance, and appreciations were successfully
removed.

3.3 Performance of Common Dialogue
Sub-sequences Extraction

Table 7 shows four extracted pairwise dialogue sub-sequences. The
first column shows the dialogue turns in one dialogue and the second
column shows the corresponding turns aligned in another dialogue.
Different dialogue sub-sequences are separated by a blank line. For
example, the first four lines of the table show two dialogue sub-
sequences that reflect the common chat flow in pin verification.
The next sub-sequence pair expresses the common starting actions
regarding adding a new cellphone to mobile services. We list two
more extracted sub-sequence pairs for readers’ interests.
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Table 7: Pairwise common sub-sequences identified by local alignments

Sub-sequence in dialogue D1 Sub-sequence in dialogue D2
A: For security purposes I will send you a pin to your cell phone via text. A: Alice to get started I will send you a pin to your cell phone via text.
A: Once you receive the pin please post it in your chat A: Once you receive the pin please post it in our chat.
A: You can receive the pin in any line of your email A: Which line can I send the pin Alice?
A: Pin sent successfully A: Pin sent.

C: I need to add a different phone to the line ending in XXXX C: I need to activate my network connection on the new phone.
it’s still attached to my old one.

A: to get started may I get your wireless number? A: to get started please provide me with your full name and mobile number.
A: may I please have the imei of the new device and the iccid of the sim card. A: Alice is this your new device?

A: do you mean cancel the line Alice? A: it’s sad to know that you want to cancel your services.
if you don’t mid me asking may i know why?

A: I’ll make this quick and seamless. A: I’ll make this quick and seamless.
by the way are you using wifi while are chatting? by the way are you using wifi while are chatting?
A: please make sure your wifi connection is with range A: please make sure your wifi connection is with range
so we can avoid getting disconnected. so we can avoid out chat from getting disconnected.
A: lastly chats are likely to disconnect if you navigate outside this chat window. A: lastly chats are likely to disconnect if you navigate outside this chat window.
so stay until we complete everything, okay? so stay until we complete everything, okay?

A: may I have the phone model please so I can check it for you A: may I know please the brand and the model of the phone?
C: device-make device-model C: device-make device-model
A: you can click here to open the page in a new window tab A: you can click here to open the page in a new window tab
I will be there on this window tab when you are ready to continue. I will be there on this window tab when you are ready to continue.

t12 t2
2 t3

2 t4
2

0 0 0 0 0

t1
1 0 1.274 1.689 0.689 0

t2
1 0 0.274 2.993 2.960 1..960

t3
1 0 0 1.993 5.577 4.577

t4
1 0 1.551 0.993 4.577 6.781

t5
1 0 0.551 0 3.577 8.014

(a) Alignment result when h = 0.2

t12 t2
2 t3

2 t4
2

0 0 0 0 0

t1
1 0 0.281 0.704 0 0

t2
1 0 0 1.015 0.982 0

t3
1 0 0 0.015 2.644 1.644

t4
1 0 0.563 0 1.644 2.854

t5
1 0 0 0 0.644 4.168

(b) Alignment result when h = 0.3

t12 t2
2 t3

2 t4
2

0 0 0 0 0

t1
1 0 0 0.205 0 0

t2
1 0 0 0.235 0 0

t3
1 0 0 0 1.374 0.374

t4
1 0 0.063 0 0.374 1.084

t5
1 0 0 0 0 2.423

(c) Alignment result when h = 0.35

t12 t2
2 t3

2 t4
2

0 0 0 0 0

t1
1 0 0 0 0 0

t2
1 0 0 0 0 0

t3
1 0 0 0 0.642 0

t4
1 0 0 0 0 0

t5
1 0 0 0 0 1.566

(d) Alignment result when h = 0.4

Figure 2: Alignment results for different settings of h

Here we discuss the parameter settings in Algorithm 1. There are
two key parameters, the similarity threshold h and the penalty p for
turn skips. h ∈ [0, 1] defines the similarity boundary that determines
whether to reward or penalize when appending additional chat turns
to previously aligned sub-sequences. A larger h requires higher turn
similarities for rewards during alignments, which leads to closer but
shorter aligned sub-sequences. A smaller h relaxes turn similarity
requirements during alignments, which leads to longer aligned sub-
sequences but takes the risk of including dissimilar chat contents.
Figures 2a, 2b, 2c, and 2d show the alignment results of dialogues
D1 and D2 in Table 3 when setting h equal to 0.2, 0.3, 0.35, and
0.4, respectively. The red arrows and shaded entries show the best
alignments between the dialogues. For example, when setting h
equal to 0.2 and 0.3, the sub-sequences identified are both <t11 , t12 ,
t13 , t15> and <t21 , t22 , t23 , t24>. When increasing h to 0.35, the common
sub-sequences become <t12 , t13 , t15> and <t22 , t23 , t24>. The first turns
t11 and t21 in each dialogue are excluded, since their similarity, 0.328,
is less than the threshold h. When further increasing h to 0.4, the
extracted sub-sequences reduce to only one pair of matched turns, t15
and t24 . In experiments, we calculated similarities between sampled
turn pairs. h was selected based on the similarity distribution. The
second parameter, p, defines a non-negative penalty of skipping a
chat turn during the alignments. Selecting a larger p is more likely
to chop the aligned sequences into pieces of shorter ones; while

selecting a smaller p is more tolerant to skipping dissimilar chat
messages. The selection of p also depends on the adopted reward
function such that the penalty for turn skips and the penalty for
appending dissimilar turns are in the same scale. In our experiments,
we set h and p to 0.3 and 0.1, respectively.

3.4 Examples of Generated Dialogues

Table 8: Examples of generated dialogues

Input 1 I need to cancel the insurance of the plan
Re:1 May I have your name please?
Re:2 I am now checking the insurance on your account.
Re:3 I have successfully removed the insurance on your account
Re:4 I have successfully applied the credit on your account
Input 2 Is there an outage nearby?
Re:1 I can help you with the network issue.
Re:2 May I have your wireless number?
Re:3 I am now checking the network area.
Re:4 I am now checking the network bars.
Input 3 I want to check my account
Re:1 May I have your name please?
Re:2 I can help you with the concern about the charges on your account.
Re:3 May I have your permission to access your online account

with you today in order to assist you?
Re:4 I am now checking the details on your account.
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Table 8 shows three dialogues generated based on different input
questions.

Given the first question “I need to cancel the insurance of the
plan”, the generated agent actions start with customer name veri-
fication. Then a sequential operations regarding customer account
checking, insurance removal, and credit recovery are conducted. For
the second question “Is there an outage nearby?”, the generated
agent actions start with concluding it as a network issue, followed by
user wireless number acquisition, and concludes by investigations
of network area and bars. The third example is related to checking
customer accounts. The generated agent actions include the acquisi-
tion of customer names and permissions to access the account. Then
account details are investigated by the agent.

4 RELATED WORK
The ability to generate coherent and semantically meaningful text
plays a key role in natural language processing applications.

Long short-term memory (LSTM) [3] and other recurrent neural
network (RNN) models have demonstrated excellent performance
on generating meaningful and grammatically correct sentences in
sequence generation tasks, such as machine translation [12, 15],
poem generation [19], and image captioning [5, 17]. The majority
of generative methods use the deep learning technique known as
sequence-to-sequence translation [15]. A LSTM model is used to
encode an input sequence to a vector, and then another LSTM model
is used to decode the vector to a target sequence. However, the
decoding is often quite brittle, as errors may accumulate over time.
[13] addresses this issue by proposing a sequence level training
algorithm that directly optimizes metric used at test time (such as
BLEU or ROUGE). [8] applies a hierarchical LSTM model, which
builds embeddings for words and sentences, and then decodes the
embeddings to reconstruct the original paragraph.

[9] first attempts to apply adversarial training on sequence gen-
eration. SeqGAN [18] extends generative adversarial network with
reinforcement learning. It models the text generation as a sequential
decision-making process, where the state is previously generated
words, the action is the next word to be generated, and the generator
is a stochastic policy that maps the current state to a distribution
over the action space. The discriminator, a classifier, takes in the
real and generated text and generates reward signals to update the
generator. LeakGAN [2] is proposed to address the sparse reward
issue in previous GAN solutions. It further uses features extracted
from the discriminator as a step-by-step guidance to train the gener-
ator. The performance improves significantly, especially in long text
generation. RankGAN [10] claims that the richness inside the sen-
tences constrained by binary prediction is too restrictive and relaxes
the training of the discriminator to a learning-to-rank optimization
problem.

In this paper we experiment with using hierarchical sequence-to-
sequence method as our generative model, and plan to incorporate
adversarial training in future work.

5 CONCLUSIONS
In this work, we study the problem of response generation for cus-
tomer care chat by applying generative models. In the data prepara-
tion part, we extract common sub-sequences by pairwise dialogue
comparisons, which allow the generative model to optimize more
on common chat flow in the conversation. In the model part, we
apply a hierarchical encoder to encode input information, where the
turn-level RNN encodes the sequential word information while the
session-level RNN encodes the sequential interaction information.
The decoder deciphers the encoded input conversation and generates

output responses. In the future work, we would combine adversarial
training and reinforcement learning to further improve the learning
performance of the generative model.
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