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ABSTRACT
The function of query auto-completion1 in modern search
engines is to help users formulate queries fast and precisely.
Conventional context-aware methods primarily rank candi-
date queries2 according to term- and query- relationships to
the context. However, most sessions are extremely short.
How to capture search intents with such relationships be-
comes difficult when the context generally contains only few
queries. In this paper, we investigate the feasibility of dis-
covering search intents within short context for query auto-
completion. The class distribution of the search session (i.e.,
issued queries and click behavior) is derived as search in-
tents. Several distribution-based features are proposed to es-
timate the proximity between candidates and search intents.
Finally, we apply learning-to-rank to predict the user’s in-
tended query according to these features. Moreover, we also
design an ensemble model to combine the benefits of our
proposed features and term-based conventional approaches.
Extensive experiments have been conducted on the publicly
available AOL search engine log. The experimental results
demonstrate that our approach significantly outperforms six
competitive baselines. The performance of keystrokes is also
evaluated in experiments. Furthermore, an in-depth analysis
is made to justify the usability of search intent classification
for query auto-completion.

Keywords
query auto-completion; short context; search intent classifi-
cation

1. INTRODUCTION
Query auto-completion is one of the most popular features

implemented by modern search engines. The goal of query

1For simplicity, query auto-completion is hereinafter referred
to query completion in this paper.
2Candidate queries are those queries that start with the pre-
fix entered by a user in a search box.
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completion is to accurately predict the user’s intended query
with only few keystrokes (or even without any keystroke),
thereby helping the user formulate a satisfactory query with
less effort and less time. For instance, users can avoid mis-
spelling and ambiguous queries with query completion ser-
vices. Hence, how to capture user’s search intents for pre-
cisely predicting the query one is typing is very important.

The context information, such as previous queries and
click-through data in the same session3, is usually utilized
to capture user’s search intents. It also has been exten-
sively studied in both query completion [1, 21, 35] and sug-
gestion [18, 25, 37]. Previous work primarily focused on cal-
culating the relationship between candidates2 and the con-
text. Nevertheless, most of real query sessions are too short
to identify such relations. In the AOL search engine log,
more than 67% of multi-query sessions consist of only two
queries; and only less than 13% of sessions have been con-
structed with more than three queries. The context consists
of only single query if we would like to predict the last query
of a 2-query session. Some works rank the candidates based
on query similarity [1,35] or user reformulation behavior [21]
such as adding and reusing terms in the context. However,
the number of terms in a query is very limited (average
2.3 terms in web search [10]), so the single-query context
might be less likely to contain the identical terms to candi-
dates. Moreover, queries might belong to similar topics, even
though they utilize distinct and inconsistent terms. Other
works [18, 25, 37] model query or term dependencies along
whole search sessions, but such approaches will deteriorate
to the näıve adjacent frequency one when there is only sin-
gle query in the context. Consequently, short context might
cause sparseness problems and ambiguous dependencies.

We then take a query session obtained from the AOL
search engine logs to explain in more details: “reverse ad-
dress” → “white pages.” The query “reverse address” rep-
resents that the user would like to find a person’s profile
by an address, and it is also the purpose of the website
“white pages.” Suppose the last query, i.e., “white pages,” is
the intended query, and the prefix is w. Its preceding one
query serves as the context. The generated queries from con-
ventional context-aware methods, such as “www.google.com”
(from [1,35]) and “walmart” (from [18,21]), are not satisfac-
tory in our experiments for the following reasons: (1) the
actual query, i.e., “white pages,” does not repeat any terms
that appear in previous queries [1,21]; (2) the query depen-
dencies between “reverse address” and “white pages” do not

3A query session is a sequence of queries submitted in a
short time period with the same information need.

49

http://dx.doi.org/10.1145/2970398.2970400


appear in the training data [18, 35]. That is, terms in the
context might not provide enough information to predict ac-
curately. One possible way to overcome the limitation and
boost the performance is to discover the implication of the
user’s search intents in the query session. If the system can
understand the high-level concepts of search intents, it would
be better capable of recognizing the intended query.

Based on click-through data and external knowledge, clas-
sifying the whole search session, including queries and user
click behavior, into a predefined set is a direct and effective
way to discover the implication of user’s search intents. It
benefits not only query classification [24, 34] but also vari-
ous applications such as relevance ranking [4]. If the search
session and candidates are well classified and represented as
search intents, the candidates can be ranked by their sim-
ilarity to representative intents of the search session. For
example, the search intents of “white pages” and “reverse
address” are close to each other because they are all classi-
fied into the ODP4 [14] category “Reference.” It is reason-
able because the website “white pages” is actually utilized
to finding people, which is the purpose of “reverse address.”
However, mapping the search sessions into categories has
been less investigated in query completion. Although some
works on query suggestion [25,37] have attempted to cluster
or classify queries into several concepts with offline training
click-through data, we further consider user’s online click be-
havior so that the classification results can effectively reflect
current search intents.

Moreover, search intent classification can be also effective
in longer sessions because the user might change her mind.
In other words, queries submitted earlier might be less likely
to share similar search intents to latter queries. Take a ses-
sion with 13 queries obtained from AOL logs as an example:
“shoes” → “timberland” → “adidas” → · · · → “cheetos” →
“doritos.” The user originally searched for shoes and related
manufacturers; however, she finally sought for snacks. If
the system exploits earlier queries, it might obtain incor-
rect messages. To put it differently, if the latter queries
can provide enough information and search intent classifica-
tion can capture user’s search intents more accurately based
on the latter queries, the prediction may be more effective.
Although some works [26,39] attempt to discover the signif-
icant changes of search intents, none of them can directly
predict the query most likely to be typed for completion.

In this paper, we focus on discovering users’ search intents
from search sessions by query classification. Given a prefix
and its context together with a set of candidate queries that
start with the prefix, the goal of this paper is learning to
rank the candidate queries5, so that the top-ranked queries
are more likely to be the query the user is typing. The con-
text includes previous queries and their click-through data
in the same session. We first classify sessions and queries
into a set of categories to form class distributions. Two
kinds of class distributions including URL-class and query-
class are considered here. Based on class distributions, we
further derive the session-class distribution for the whole
search session from three different aspects. For each candi-
date, eight distribution-based features are proposed to esti-
mate its closeness to the context. Our method finally ranks
the candidate queries based on a total of 22 distribution-

4Open Directory Project (ODP) uses a hierarchical ontology
scheme for organizing site listings.
5In this paper, we focus on the ranking problem only.

based features (1 query feature and 7 session/query-session
features for three aspects of the session-class distribution).
Furthermore, we propose to combine term-based conven-
tional approaches and our proposed features into an ensem-
ble model to obtain knowledge from different aspects and
achieve better performance.

Extensive experiments have been conducted on the pub-
licly available AOL search engine log. The experimental re-
sults reveal that prediction performance can be significantly
improved based on our method, compared to six competi-
tive baselines. Moreover, since the main purpose of query
completion is to save users’ keystrokes, we further examine
whether our approach does effectively reduce the number
of keystrokes, which is less verified in most of the previ-
ous work [1, 21, 35]. Finally, an in-depth analysis of search
intent classification is also provided as evidence, which ex-
plains why our distribution-based features are effective.

In the rest of this paper, we make a brief review on related
work in Section 2 and present our problem and framework
for query completion in Section 3. The experimental results
and analysis of search intent classification are presented in
Sections 4 and 5, respectively. Finally, in Section 6, we give
our discussions and conclusions.

2. RELATED WORK
In this section, we first give the background of query com-

pletion, and indicate the difference between our approach
and previous work. Query suggestion, which is a task close
to query completion, is then introduced and compared to
our approach. Last but not least, we discuss query classi-
fication, which is relevant to search intent classification in
this paper.

2.1 Query Auto-Completion
Before ranking queries for query completion, the sufficient

candidate queries starting from the given prefix should be
generated in advance. Most works on query completion ex-
tract candidates from query logs [21,35] and document cor-
pus [6]. Once candidates are generated, they can be ranked
for various applications such as web search [1] and product
search [12]. In this paper, the candidate queries are gener-
ated from query logs.

In the case of query completion in web search, the most
common and intuitive approach is to rank candidates ac-
cording to their past popularity. However, less popular query
might be difficult to predict; on the other hand, the general
popularity might not be favorable for every situation [36].
To achieve a better performance in prediction, the context
information is usually utilized to rank candidates differently.
Bar-Yossef and Kraus [1] and Shokouhi [35] measured the
similarity to queries in the context. Jiang et al. [21] models
users’ reformulation behavior along the whole search session.
Mitra [29] further automatically learns the distributed rep-
resentation of query reformations by deep neural network
models. Some other factors are also taken into account
for improving performance. Shokouhi et al. [36] and Cai et
al. [9] ranked candidates differently according to the tempo-
ral information. Whiting and Jose [38] predicted the query
trends and distributions by a sliding window from the past
few days. The personalization is also a possible solution con-
sidering users’ personal information, such as demographics
and search history [9, 35].

However, all of previous approaches in query completion
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utilized only query terms, but not class information of user’s
search intents along the whole search session. Our solution
differs from these works in that we try to derive class distri-
butions of sessions as users’ search intents, thereby ranking
candidate queries more effectively.

2.2 Query Suggestion
Query suggestion, which has been extensively studied in

the field of IR, is closely related to query completion, but the
goals of the two tasks are very distinct. Different from sav-
ing users’ keystrokes by precise prediction in query comple-
tion, query suggestion concentrates on discovering relevant
queries in relation to the context. However, the intended
query that the user is typing might be in the list of sug-
gested queries, so it could be applied in query completion
and regarded as the related work.

The context information including query session and click-
through data is also usually applied in query suggestion.
Huang et al. [20] and Fonseca et al. [16] suggested queries
with high frequency of co-occurrence with queries in the con-
text. Moreover, Boldi et al. [7] and Song et al. [37] con-
structed transition graphs of queries and terms for mining
the dependencies. Furthermore, some works [18,25] adopted
sequential probabilistic models to model the transition prob-
abilities. In addition to query terms, the click-through data
is helpful to reveal queries with similar topics. Mei et al. [27]
applied the random walk on click-through bipartite graphs
to discover relevant queries. Liao et al. [25] also utilized such
graphs to cluster queries into several concepts. To deal with
the problems of data sparseness, some works [18,25] allowed
the partial matching to the context. Liao et al. [25] clustered
queries for flexibility. Furthermore, some works [31, 33] ap-
plied machine learning frameworks with statistical features.

Compared to prior context-aware query suggestion meth-
ods, our approach can well exploit the context information
and cope with the sparseness problems. Besides, none of the
prevalent approaches to query suggestion attempts to clas-
sify user’s search intents with the whole search session. Al-
though some works [25,37] classified or clustered each query
into a class or a group of relevant queries, they did not pay
attention to the whole search sessions including preceding
submitted queries and user click behavior, which represent
users’ actual search intents.

2.3 Query Classification
Query classification aims to classify a query into a pre-

defined class or category. Gabrilovich et al. [17] identify
queries and ad classes to improve the relevance of advertis-
ing. To classify queries, they make a weighted aggregation
of the classes of URLs retrieved by search engines. Kang
and Kim [22] utilized some IR and NLP measures as the
features to classify queries and decide which algorithm for
retrieval. With query logs from search engines, Beitzel et
al. [3] made use of URLs information to pre-process queries
into corresponding categories. The task of the 2005 KDD
Cup [24] is also akin to query classification. The challenge
of task is to classify queries with few training data. Most
successful approaches [34] made use of external information
such as ODP [14] or WordNet [28]. To enhance retrieval re-
sults, Bennett et al. [4] adopt ODP information and derive
class distributions to improve ranked results. However, none
of the previous work predicts users’ intended queries with
query classification. In our work, we attempt to derive class

distributions with clicked URLs and ODP information for
extracting distribution-based features of submitted queries
and users’ search intents.

3. QUERY AUTO-COMPLETION WITH
SEARCH INTENT CLASSIFICATION

We first formally define the objective and the notations in
this paper. A search context 〈q1, q2, · · · , qT−1〉 is defined
as a sequence of T −1 queries issued by a user within a short
period (i.e., the search session). Each query has the corre-
sponding click information ui, which is the set of clicked
URLs in the search result page of qi. Suppose a user in-
tends to issue qT and has already inputs p, i.e., the prefix
of qT in the search box, after the search context. We would
like to predict qT for query completion. Given a search con-
text with T − 1 preceding queries 〈q1, q2, · · · , qT−1〉 and a
candidate set QT matched the prefix x, the goal is to give
a ranking of candidates q′j ∈ QT so that queries in higher
positions are more likely to be qT .

In our work, we propose a supervised approach consisting
of two components and leverage class information of users’
search intents to query completion. First, we adopt click-
through information and the predefined knowledge to derive
URL-, query- and session-class distributions. Then several
features are introduced to measure some important prop-
erties between class distributions of the session and can-
didates. With the training data collected from search en-
gine logs, almost any learning-to-rank algorithm can be ap-
plied to obtain our ranking model. We finally choose Lamb-
daMART [8], which is one of the state-of-the-art ranking
models.

3.1 Query and Session Classification
During a search session, the user may have her own search

intents. When the user determines her search intents, the
class of information need may also be implicitly chosen by
the user. Although some previous work [25] tried to cluster
each query into a “concept” in advance, a query may belong
to more than one concept or topic. This is also the reason
why we calculate class distributions but classify a query or a
session into a single class. In addition, they ignore that some
predefined external information such as ODP categories [14]
and reading levels [23] might be helpful for predicting user’s
intended query.

Different from previous work [4], we focus on deriving class
distributions of not only queries but search sessions. Based
on the URL-class and query-class distributions, we attempt
to model session-class distributions from three views for dis-
covering users’ search intents. With the class distributions
of the candidate query and the session, we can find relations
between the candidate query and previous behaviors, includ-
ing preceding submitted queries and click-through URLs in
the session.

Classification Space. With some predefined knowledge,
the queries and sessions can be classified into several cate-
gories such as topical categories, semantic categories and
reading levels [23]. In this paper, ODP categories [14], which
is a topical hierarchy structure, are adopted as the classifica-
tion target. For conducting experiments, we used 16 topical
categories from the top level of the ODP structure, which
were crawled in December 2014. In our experiments, more
than 53% of user clicks are covered by URLs in ODP. The
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remaining clicks are dealt by the smoothing techniques for
computing a general distribution.

3.1.1 Query-class Distribution
Following the assumption mentioned in [4], we suppose

that the query-class distribution is an aggregation over all
relevant URLs. Moreover, here we assume that class distri-
bution is only dependent to relevant URLs. Then we can
calculate the query-class distributions with only query-URL
relevance and URL-class distributions of all relevant URLs.
More formally, the probability P (c | q) is the query-class
distribution for a query q and a class c. The probabilities
P (u | q) and P (c | u) represents the query-URL relevance
and the URL-class distribution. By marginalizing over all
the relevant URL u of a query q and the above assumption,
P (c | q) can be re-written as follows:

P (c | q) =
∑
u

P (c | u, q) · P (u | q) (marginalization)

=
∑
u

P (c | u) · P (u | q) (by assumption),

then we can compute P (u | q) and P (c | u) separately for
calculating the query-class distribution.

URL-class Distribution. With different targets of clas-
sification, there are various approaches for classifying URLs.
Bennett et al. [4] and Kim et al. [23] built a classifier to
estimate the class distribution P (c | u) for each category.
Baykan et al. [2] analyze characters of the URL to iden-
tify the category. However, building numerous and complex
models for every category and all URLs is too inefficient
for query completion, which aims to predict rapidly. In our
approach, we assume that URLs which belong to the same
host may have similar class distributions. Then we can pre-
compute class distributions of plentiful URL hosts in ad-
vance and calculate a prior distribution P (c) for URLs whose
hosts are not in the pre-computed list with the smoothing
technique.

The ODP data has been crawled and treated as the “gold-
standard” classification results. Then we can derive class
distributions for URLs by the smoothing computation as
follows:

P (c | u) =
Occurs (h (u) , c) + m · P (c)

m +
∑

ci
Occurs (h (u) , ci)

.

Here m is a parameter for smoothing. The function h (u) ex-
tracts the host of URL u. Occurs (h (u) , c) calculates how
many websites with host h(u) belong to category c in the
contents of ODP. The prior distribution P (c) can be com-
puted by normalizing the number of websites in ODP for
each category.

Query-URL Relevance. In order to estimate the rel-
evance between queries and URLs, the click-through data
is usually treated as a useful information and the relevance
signal [11]. With such relevance signal, we attempt to de-
rive the query-URL relevance from the large-scale search
engine log. When a URL appearing in the search results
of a query was clicked more times in search engine log, we
trust that the URL is more relevant to the query than other
URLs. However, some URLs are much rare in the log such
that the estimated results may be dubious. To handle the
sparseness problem, we keep following the assumption that
URLs have similar distributions to their hosts. For remain-
ing URLs whose hosts still do not appear in training data

with the query, we calculate a prior distribution for them.
Then we can calculate query-URL relevance with smoothing
technique as follows:

P (u | q) =
C (h (u) , q) + m · P (h (u))

m +
∑

h(u) C (h (u) , q)
.

C (h (u) , q) counts the clicked times of the host h(u) with
query q in the log. The prior distribution P (h (u)) is cal-
culated by normalizing the number of times URLs which
belong to h (u) are clicked in the log.

3.1.2 Session-class Distribution
The session-class distribution can be treated as the distri-

bution of user’s information need from the context, includ-
ing preceding queries and clicked URLs. If we capture the
user’s search intents precisely, it can be matched to the class
distributions of candidate queries. Formally, we extract the
session-class distribution P (c | 〈q1, q2, · · · , qT−1〉) to simu-
late user’s search intents, given the context 〈q1, q2, · · · , qT−1〉.
In our approach, we derive session-class distributions in three
different views, including All Preceding Queries, Last Query
and Local-clicked URLs.

All Preceding Queries (All). The user’s search intents
may be shown in the preference of submitted queries. Al-
though queries are able to have various distributions, we try
to obtain information from all preceding queries submitted
by users. As we know how to estimate the query-class dis-
tributions in the above paragraph, we can perform the class
distribution of the session as a linear weighted combination
as follows:

Pall (c | 〈q1, q2, · · · , qT−1〉) =
1∑
wi

∑
wiP (c | qi) .

Here wi are the weight parameters. We assume that the
more recent submitted query is more likely relevant to user’s
search intents, and the weights are monotonically decreas-
ing. In our approach, we make weight function as a linear
decay function (wi = 1/ (T − i)).

Last Query (Last). In a long session with many queries,
the search intents of latter queries may be changed and dif-
ferent from the original ones. The last query (i.e., the most
recent query in the context) could be treated as a sign of
user’s recent search intents. In this view, we assign the dis-
tribution of the last query in the context as the session-class
distribution as follows:

Plast (c | 〈q1, q2, · · · , qT−1〉) = P (c | qT−1) .

Local-clicked URLs (Local). In addition to queries in
the context, the clicked-through information is also a impor-
tant information. As a relevance signal [11], a URL clicked
in the session is more authentic than click-through data in
the log. Also, a query may belong to more than one class
or concept, the local click-through information helps us to
identify the correct distribution of current session more pre-
cisely. To derive session-class distributions constructed by
local-clicked URLs, we first define the local query-URL rele-
vance. We treat whole context as a new “query” and a local
log to calculate the relevance probability as follows:

Plocal (u | 〈q1, q2, · · · , qT−1〉) =
Clocal (h (u)) + m · P (h (u))

m +
∑

h(u) Clocal (h (u))
,

where the function Clocal (h (u)) counts the clicked times
of the host h(u) in the context. To avoid biasing to rare
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situations, we adopt the prior distribution to smooth the
relevance score. Then we collect click-through URLs ui in
the session as a set of URLs u, and calculate the session-class
distribution as follows:

Plocal(c | 〈q1, q2, · · · , qT−1〉)

=
∑
ui∈u

P (c | ui)Plocal(ui | 〈q1, q2, · · · , qT−1〉)

Three kinds of session-class distributions show different
views to observe a search session and capture the user’s
search intents. We then use them to extract distribution-
features with query-class distributions of candidate queries.

3.2 Distribution-based Features
Based on the class distributions of session and candidate

queries, we then define various features and apply machine
learning algorithms to discover and model interactions with
other features. Features for learning to rank can be cate-
gorized into three classes, including query features, session
features and query-session features. The query features and
session features are extracted from only class distributions
of candidate queries and the session. The query-session fea-
tures consider both candidate queries and the session.

Query/Session Class Entropy (QCE/SCE). In our
approach, class entropy measuring the entropy of the class
distribution is the only feature of query feature and session
feature. The class entropy is helpful to identify the ambigu-
ity of a candidate query or the session information. Queries
and sessions with lower entropy (i.e., belonging to fewer top-
ics) might be submitted by users trying to narrow the search
results to such topics.

Next, we model the query-session features aiming to mea-
sure how well a candidate query matches to the search ses-
sion with the class distribution.

Class Match (CM). Among the class distribution, we
can find the most likely class of a candidate query and the
session. Users may submit queries in the identical class of
the session and previous context. So we treat whether the
most likely classes of the query and the session are matched
as the ClassMatch feature.

ArgMaxOdds (AMO) & MaxOdds (MO). We then
try to measure how well the session-class distribution matches
the most likely class of the candidate query. Define the most
likely class of the candidate query q as c∗q = argmax

c
P (c | q),

we calculate the ArgMaxOdds feature as follows:

P (c∗q | q) log
P (c∗u | 〈q1, q2, · · · , qT−1〉)

P (c∗q)
.

Here the prior P (c∗q) is adopted to weight the class distribu-
tion as the probability of observing that class. By relaxing
the ArgMaxOdds feature, we calculate the MaxOdds over all
classes and find the maximum measure as follows:

max
c

P (c | q) log
P (c | 〈q1, q2, · · · , qT−1〉)

P (c)
.

KL Divergence (KL) & Cross Entropy (CE). The
previous two features encode information of only one class,
which is the most likely class or the class with maximum
measure. We adopt KL Divergence to estimate how a can-
didate query matches the session upon the entire class dis-

Table 1: Eight distribution-based features and used
information. Note that features related to ses-
sions will be extracted three times for three aspects
of session-class distribution (See Section 3.1.2), so
there are totally 22 features in the model.

Feature Query Session # in Model

Query Class Entropy (QCE)
√

1

Session Class Entropy (SCE)
√

3

Class Match (CM)
√ √

3

ArgMaxOdds (AMO)
√ √

3

MaxOdds (MO)
√ √

3

KL Divergence (KL)
√ √

3

Cross Entropy (CE)
√ √

3

Distribution Similarity (DS)
√ √

3

tribution, that is:∑
c

P (c | q) log
P (c | q)

P (c | 〈q1, q2, · · · , qT−1〉)
,

and we handle the special cases 0 log 0 and zero denomina-
tor as 0. Cross Entropy is the other feature similar to KL
Divergence. It measures how topics represented in a candi-
date query are covered by the session. The formula of Cross
Entropy is shown as follows:

−
∑
c

P (c | q) logP (c | 〈q1, q2, · · · , qT−1〉).

Distribution Similarity (DS). Each distribution has
probabilities in all classes. We treat such distribution of
a query or a session as a n-dimensional vector, which n is
the number of classes. With the vector representation, we
calculate cosine similarity between two vectors and measure
the relation of the candidate query and the session.

Table 1 gives the summary of proposed features and their
used information. Note that we apply three aspects of session-
class distribution as described in Section 3.1.2 to extract
session-related features. Hence, there are finally 22 features
in the model (one query feature and seven session/query-
session features for each aspect).

3.3 Ensemble with Conventional Approaches
Our proposed approach mainly focus on utilizing click-

though data and external knowledge to classify queries into
certain categories. In other words, the similarity based on
query terms, which is the principal idea of conventional ap-
proaches, does not be considered in our model. Hence, the
performance may be further improved if there is an ensem-
ble model to combine our approach and other conventional
approaches. Moreover, traditional term-based methods may
favor longer search sessions so that more information can
be found in the context. Conversely, class distribution ex-
tracted from short context in our approach may be able to
more precisely represent users’ search intents. That is, an
ensemble model of two solutions may simultaneously benefit
short and longer search sessions.

As the first study, we simply adopt all 43 features pro-
posed in [21] as the other side of the ensemble model because
this is one of the state-of-the-art approaches based on query
terms in the context. Here LambdaMART [8] is utilized
again to train an ensemble model to incorporate features
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proposed in this paper and [21]. Note that the length of the
search session is one of the utilized features, so theoretically
the ranking model will learn the strength of each model and
perform well with both long and short search sessions.

4. EXPERIMENTS
In this section, we conduct extensive experiments on the

large-scale datasets to verify the performance of our ap-
proach predicting user’s intended query in the session.

4.1 Datasets and Experimental Settings
We use the public AOL log [32] in our experiments. The

data comprises sampled queries submitted to the AOL search
engine from 1 March, 2006 to 31 May, 2006. The query log
is first segmented into sessions with a 30-minute threshold
as the session boundary. To remove misspelled and rare
queries, queries appearing less than 10 times in the whole
log are dropped. Sessions with only single query are dis-
carded because there must be at least one preceding query
as the context for context-aware methods. After removing
rare queries and single-query sessions, there are 1,359,760
sessions and 141,975 unique queries in total. Here we notice
that the number of unique queries is inconsistent with [35].
It might be caused by a different procedure, which is not
mentioned in [35], to remove short sessions. For each ses-
sion with T queries, we treat each query qi from the second
position (i.e., i ≥ 2) as the ground truth, which is the in-
tended query we want to predict. The context is composed
of i − 1 preceding queries 〈q1, q2, · · · qi−1〉 and their click-
through information. Note that the cleaning process in this
paper is consistent with previous work [35,36].

After cleaning, the data is then partitioned into two sets.
The first 2-month data is used for training. The remain-
ing 1-month data is for testing. Finally, we collect 891,145
sessions as our training set. We use query frequency to gen-
erate candidate set. After filtering out those queries not
starting from the prefix, the top-10 queries ranked by fre-
quency form our candidate queries. The prefix is set to be
the first character of qT . Note that most of our settings are
consistent with previous work, including the removal of rare
queries [35], the way to generate candidates [21,35].

To evaluate performance on tasks with different lengths of
context, the testing sessions are divided into three subsets,
including “Short Context” (1 query), “Medium Context” (2
to 3 queries) and “Long Context” (4 or more queries). Be-
sides, we tune our LambdaMART model with parameters of
1,000 decision trees across all experiments; and we set the
smoothing parameter m as 0.04 after tuning.

4.2 Competitive Baselines
To compare our approach with others, the following con-

ventional methods are adopted as the baselines:
Most Popular Completion (or MPC). MPC is a Max-

imum Likelihood Estimation approach. It simply ranks can-
didates by their frequencies.

Hybrid Completion (or Hyb.C). Hyb.C proposed in
[1] is a context-sensitive query completion method, which
considers both context information and the popularity. The
ranking of a candidate is determined by linear combination
of its popularity (i.e., MPC) and similarity to recent queries.

Personalized Completion (or Per.C). Per.C proposed
in [35] is a personalized query completion method, which
considers users’ personal information including submitted

queries and demographics information. In this paper, we
implement this method with short-term history (i.e., queries
in the session), long-term history (i.e., queries in the user’s
search history) and query frequency.

Query-based VMM (or QVMM). QVMM proposed
in [18] is a context-aware query suggestion method. It learns
the probability of query transition along the sessions with
the variable memory Markov model, which is an extension
of Markov chain model.

Concept-based VMM (or CACB). CACB proposed
in [25] is a concept-based context-aware query suggestion
method. It clusters queries into several concepts to overcome
the sparseness problem. After mapping each query to its
corresponding concept, CACB tries to model the concept
transition, instead of query transition, with variable memory
Markov model.

Reformulation-based Completion (or RC). RC pro-
posed in [21] models users’ reformulation behavior during
search sessions. It considers three kinds of reformulation-
related features, including term-level, query-level and session-
level features. The features carefully capture how users
change preceding queries along the query sessions. We use
LambdaMART [8] to train the model with 43 reformulation-
related features.

Note that we do not compare our approach with [38] and
[9] because [38] does not apply context information, and the
temporal information [9] is not the focus of this paper.

4.3 Evaluation Metrics
In our experiments, mean reciprocal rank (MRR) is ap-

plied to evaluate the quality of query completion. The mean
reciprocal rank (MRR) takes account of the ranked position
of the ground truth. Given the session context C and the
ground truth qT , the reciprocal rank (RR) of an algorithm
A is defined as follows:

RR(A) =
1

hitrank(A,C, qT )
,

where hitrank(A,C, qT ) computes the position of the ground
truth ranked by the algorithm A. Thus, MRR can be com-
puted as the mean value of RR for all search sessions in the
testing set.

4.4 Overall Performance
Table 2 shows the experimental results over different pre-

fix lengths. Our approach is denoted as CC (Classification-
based Completion), and the single context means that we
use only one preceding query as the context. Note that al-
though both CC and CC (Single Context) utilize only one
query as the context in the short context set, results might
be different because the latter exploits only a single query
in the training stage. Besides, MRR shown in [35] is higher
than our reports because they do not consider sessions whose
ground truths are not in the candidate lists. In other words,
our evaluation can more effectively reflect the real situations.

Based on the context information, all of context-based
methods outperform MPC in most cases. The Hyb.C com-
pletion has similar performance to the MPC method for
short context. This is because short sessions context too few
terms for Hyb.C to match the query to the context. With
personal history, the Per.C method has better performance
than the Hyb.C method because it can capture personal
characteristics. The QVMM and CACB methods outper-
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Table 2: The MRR performance of seven methods in the overall testing set and three subsets over different
lengths of typed prefixes #p. Our approach is denoted as CC (Classification-based Completion), and the
single context denoted as SC consists of only one query for both training and testing. The ensemble model of
the RC method [21] and our approach is denoted as RC + CC. All improvements of our methods against [21]
are significant differences at 95% level in a paired t-test.

Dataset #p MPC Hyb.C [1] Per.C [35] QVMM [18] CACB [25] RC [21] CC CC (SC) RC + CC

Overall

1 0.1724 0.1796 0.1935 0.2028 0.1987 0.2049 0.2140 0.2159 0.2245

2 0.2703 0.2733 0.2770 0.2868 0.2828 0.2841 0.2939 0.2965 0.3024

3 0.4004 0.4025 0.4026 0.4066 0.4014 0.4122 0.4193 0.4230 0.4369

4 0.5114 0.5137 0.5129 0.5179 0.5126 0.5244 0.5358 0.5406 0.5562

1 0.1540 0.1538 0.1740 0.1858 0.1813 0.1842 0.1966 0.1975 0.2055

Short Context 2 0.2523 0.2524 0.2591 0.2704 0.2637 0.2635 0.2792 0.2804 0.2864

(1 Query) 3 0.3819 0.3805 0.3846 0.3912 0.3903 0.3934 0.4065 0.4083 0.4177

4 0.4939 0.4923 0.4962 0.5042 0.4979 0.5072 0.5243 0.5266 0.5390

1 0.2041 0.2233 0.2266 0.2317 0.2288 0.2399 0.2438 0.2449 0.2556

Medium Context 2 0.3015 0.3094 0.3080 0.3153 0.3111 0.3196 0.3226 0.3241 0.3356

(2 to 3 Queries) 3 0.4293 0.4320 0.4308 0.4356 0.4316 0.4419 0.4435 0.4455 0.4573

4 0.5368 0.5392 0.5371 0.5398 0.5373 0.5498 0.5539 0.5565 0.5694

1 0.1922 0.2207 0.2155 0.2164 0.2146 0.2284 0.2247 0.2310 0.2439

Long Context 2 0.2892 0.3000 0.2953 0.3002 0.2987 0.3076 0.3036 0.3121 0.3182

(4 or more Queries) 3 0.4291 0.4396 0.4303 0.4302 0.4304 0.4397 0.4328 0.4449 0.4592

4 0.5443 0.5497 0.5439 0.5468 0.5449 0.5546 0.5473 0.5625 0.5801

form previous baseline methods since they model query tran-
sitions along the whole search session. The reformulation-
based completion (RC) performs the best among all baseline
methods because it comprises abundant and diverse user re-
formulation behavior in different levels.

For all testing datasets, our approach beats the entire six
comparative baseline methods over all prefix lengths, and
significantly outperforms the RC method at 95% level in a
paired t-test. Our approach has the greatest improvement
in short context, which are the majority in search logs. This
is because our model derives high level information (i.e.,
class distribution of search intents) beyond the limitation
of query terms. Hence, the relationships between candi-
dates and search intents can be discovered with very short
context. However, the improvements of our approach grad-
ually decrease when the length of context increases. The
performance in the long context is even worse than the RC
method. The reason is that former queries or click-through
information may represent different search intents from lat-
ter ones. In contrast, while considering only a single query
in the context, the performance in longer context improves
simultaneously. It shows that our features can precisely cap-
ture users’ search intents in the very limited context and
avoid the noises of premature queries. The results are also
consistent with [5, 29], which have shown the importance of
the immediate query in modelling query sessions.

After combining the RC method [21] and our approach,
the ensemble model obviously outperforms each of single
model. Compared to two single models, the performance
with a character as the prefix achieves a 9.57% improve-
ments against the RC method and a 3.98% improvement
against the CC method. It is reasonable because two ap-
proaches utilize different information to solve the problem
so that the ensemble model can obtain the knowledge from
both methods. Moreover, the improvements in the dataset

of long context against the CC method are greater than
the improvements in the datasets of shorter context. This
is because the knowledge from the RC method mends the
shortcoming of the CC method on long context and improves
the performance. Hence, the ensemble model of term-based
methods and classification-based completion methods can
actually predict users’ intended queries more precisely.

4.5 Feature Effectiveness Analysis
In order to analyze the importance of different features,

we adopt the leave-one-out feature selection method to ver-
ify the feature effectiveness. Figure 1 shows the result of
leave-one-out feature selection. For example, we calculate
the performance loss of SCE by removing three features of
SCE, and then re-training the model. Here we apply the first
character as the prefix. Note that features with higher per-
formance loss are more important to the model. It is worth
noticing that QCE is the most effective single feature. The
result is also consistent to the previous work [4]. This fea-
ture can be treated as a measure of query ambiguity [13], and
it implicitly leads to different ranking functions for queries
with many intents and only few intents. The features about
most likely class, including CM, AMO and MO, have the
least importance among query-session features in the model.
The reason is that the most likely class only cannot well cap-
ture the relationship between candidate queries and user’s
search intents (i.e., session-class distributions). In contrast,
KL and CE are the most important query-session features
because they estimate how a candidate query matches the
session upon the entire class distribution.

Recall that we derive the session-class distribution from
three different views and extract distribution-based features
for them separately. We also analyze the importance of these
extraction methods. As shown in Fig. 1, the features ex-
tracted by local-clicked URLs are the most effective among
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Figure 1: The performance loss of MRR for each in-
dividual feature category and each aspect of session-
class distribution in leave-one-out feature selection.
Note that the numbers in (·) represent the numbers
of features in the model. All of abbreviations can
be found in Section 3.

(a) Android Smartphone (b) Google Maps

Figure 2: The illustrations of query completion sys-
tems on the Android smartphone and the Google
Maps.

three views. It can be explained that the local-clicked URLs
represent users’ information needs correctly. Although we
can derive general class distributions for queries in sessions,
they may not fit the users’ search intents well.

4.6 Keystroke Experiments
Although MRR is widely used as the evaluation measures

for query completion, it might not reflect the user’s actual
demands. Both of two measures are sensitive to different
positions of queries, but usually the user only hopes that
the query appears in a high position. As shown in previous
work [19, 30], the position biases generally exist in query
completion and strongly affect its examination. Moreover,
users usually can observe only few queries. For example,
Figure 2 shows the illustrations of query completion systems
on the Android smartphone and the Google Maps. Users can
observe only five queries, so other queries ranked lower are
meaningless for user experience and evaluation. Actually,
users would like use the least keystrokes to make the desired
query in a higher position. Although the query is ranked in
a much low position (and out of the screen) with only one
keystroke, the system may be still effective if it can rank the
query in a very high position with two keystrokes.

Although this idea has already been proposed in previ-
ous work [15], few works utilized such measure to evaluate

Table 3: The keystroke performance of seven meth-
ods in the whole testing set. Our approach is de-
noted as CC (Classification-based Completion).

Measure No Comp. MPC Hyb.C [1] Per.C [35]

KS@1 11.0034 8.4294 6.8694 6.5761

KS@2 - 6.8625 5.6452 5.5078

KS@3 - 5.9830 4.9616 4.6965

KS@4 - 5.3038 4.5353 4.1793

Measure QVMM [18] CACB [25] RC [21] CC

KS@1 5.8704 6.1135 5.0129 4.7479

KS@2 4.1562 4.7813 3.9295 3.6660

KS@3 3.7044 4.0173 3.6523 3.5880

KS@4 3.6076 3.9138 3.5928 3.5818

the actual performance of query completion in a proper way.
Here we evaluate our approach and baseline methods accord-
ing to users’ keystrokes. The keystroke at top-k (KS@k) is
defined as the average keystrokes users spend so that the
actual queries can be found in the top-k queries predicted
for sessions.

Table 3 shows the keystroke performance of 5 methods
in whole testing set. Because the average length of queries
is about 11 characters, a user may spend 11 keystrokes av-
eragely in a system without query completion. For query
completion methods, it is obvious that all methods can save
keystrokes. The results are also consistent to the perfor-
mance shown in Table 2. Moreover, our approach still out-
performs all comparative methods in the keystroke perfor-
mance. For our approach, it can save 56.85% keystrokes for
users. It represents that our approach is actually useful for
user to save their time in typing queries.

5. ANALYSIS OF SEARCH INTENT CLAS-
SIFICATION

In this section, we analyze the classes of users’ search in-
tents and further explain why our distribution-based fea-
tures are effective to the query auto-completion.

5.1 Most Likely Class
Recall that the most likely class of the candidate query q

is c∗q = argmax
c

P (c | q) and so is session’s, we can compute

the most likely class of a query or a session from derived
class distribution. Figure 3 shows the percentage of sessions
whose queries contain different number of topics. We can see
that the queries in most sessions contain only a few classes
for every length of sessions. That is, the candidates belong-
ing to these few classes may have larger probability to be
submitted as the next query. In other words, there are gen-
erally a small number of topics focused in a session. It is also
the reason why our distribution-based features capturing the
class distribution are effective in our experiments.

Next, we would like to know how the distribution-based
features work in sessions within different length. Figure 4
shows the percentage of sessions whose most likely classes
are identical to the last queries. Among three views of ex-
tracting session-class distribution, the view of local-clicked
URLs has the highest percentages. It is consistent to the
feature effectiveness analysis in Section 4.5. The percent-
ages of shorter sessions are higher than longer ones in all
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Figure 3: The percentage of sessions whose queries
contain different number of most likely classes.
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Figure 4: The percentage of sessions with the iden-
tical most likely classes to the last queries over dif-
ferent session length.

three views. The reason might be that shorter context has
fewer noises to be matched more precisely. It also explains
why our approach has greater improvements with shorter
context. However, there are more than 40% sessions whose
the most likely classes are not identical to the last queries.
This might be the reason why features of the most likely
class are not so important in the model, as shown in Fig. 1.

5.2 Distribution Matching
Beyond the most likely class, this section discusses the

matching between candidate queries and the search session.
As the analysis in Section 4.5, KL Divergence and Cross
Entropy are the most effective features among query-session
features. That is, estimating how a candidate query matches
the session upon entire class distributions is useful to identify
the actual submitted query (or the ground truth) in the can-
didate query list. Table 4 shows the percentages of incorrect
candidate queries whose KL Divergence and Cross Entropy
are larger than the ground truths of sessions over three views
of the session distribution. For a candidate query, lower
feature values represent that the distribution of the query
is more similar to the session. Both features can well dis-
tinguish the ground truths from other incorrect candidate
queries. The KL Divergence values of submitted queries
are less than at least 64% other incorrect candidates over
each view of the session distribution. Among three views of
the session distribution, features extracted by local-clicked
URLs perform best on identifying the correct queries. More
than 80% incorrect candidates are ranked lower than the
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Figure 5: Average KL Divergence between local-
clicked URLs and the last query over different posi-
tion in sessions.

ground truths in KL Divergence. It is also consistent to the
results in Section 4.5. The results show that the derived
class distribution can well represent the characteristics of
queries and sessions. Therefore, the distribution matching
can advantageously identify the actual submitted query.

Table 4: Percentages of incorrect candidate queries
whose features are larger than the ground truths of
sessions over three views of the session distribution.

Feature
All Preceding Last Local-clicked

Queries Query URLs

KL Divergence 0.6641 0.6406 0.8118

Cross Entropy 0.5994 0.5688 0.7072

5.3 Local-clicked URLs
As the relevance signals in the search session, local-clicked

URLs can provide copious information about users’ search
intents. The features extracted by such URLs are also ef-
fective in our model as shown in Section 4.5. This section
discusses why local-clicked URLs are so useful.

The hosts of URLs are worth a thought because URLs
under a same host might share similar search intents. For
each session whose the last query has clicked URLs (i.e.,
uT 6= ∅), there are 11.89% sessions which have URLs of the
identical hosts within previous queries. Even though the
space of URL hosts is very sparse and contains hundreds
of thousands hosts, there are still numerous sessions with
identical hosts. It shows that there will be more sessions
with URLs of similar search intents, not only URLs with
the identical hosts. It might also be the reason that the
features of local-clicked URLs are so useful.

Next, we analyze the distribution matching between the
last queries and local-clicked URLs in each position. Figure
5 shows the average KL Divergence between local-clicked
URLs and the last query over different position in sessions.
Note that the last queries are distinct in sessions of differ-
ent session lengths, so KL Divergence values for different
lengths are not comparable. From Fig. 5, it is worth notic-
ing that the average KL Divergence decreases as the position
increases. The class distribution of more recently clicked
URLs are more similar to the query. It is also consistent to
the results in Section 4. Shorter context might contain more
clear information and obtain better improvements.
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6. DISCUSSIONS AND CONCLUSIONS
In this paper, we proposed a novel approach for query

completion aiming to predict users’ next intended queries.
Different from conventional context-aware methods discov-
ering term- and query-level relationships between sessions
and candidates, we classify users’ search intents behind search
sessions by deriving class distributions for predicting queries
more precisely. We focus on discovering search intents with
short context because most of search sessions are very short
and limited. The results of extensive experiments demon-
strate that our approach significantly outperforms several
existing context-aware approaches. Such improvement is
consistent across different context lengths. The reasons are
as follows: (1) our classification-based model requires less
training data. There are only few categories for classifica-
tion. The sparseness problem can be solved; (2) class dis-
tributions of search sessions can well capture users’ search
intents. Several distribution-based features matching search
sessions and candidate queries are considered for query com-
pletion. (3) with a high-level aspect, users’ search intents
can be well captured in the limited context. The results
of analysis in Section 5 also support that our features are
helpful and important. Moreover, the results of keystroke
experiments in Section 4.6 show that our approach can ef-
fectively reduce users’ keystrokes to complete queries.

As future work, users’ reformulation behavior may further
interact with search intent classification although we have
proved their ensemble model has a excellent performance in
Section 4. For example, some users’ behavior may imply the
change of search intents, then we can dynamically modify
the classification-based model.
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