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ABSTRACT

Speaker identification answers the fundamental question
“Who is speaking?” The identification technology enables
various downstream applications to provide a personalized
experience. Both the prevalent i-vector based solutions and
the state-of-the-art deep learning solutions usually treat all
users equally, with no distinctions between new users and ex-
isting users, during the training process. We notice that a good
many new users start with limited labeled training data, which
often results in inferior predicting performance of recognizing
users’ voices. To alleviate the disadvantage caused by train-
ing data deficiency, we propose a Mixture Density Network-
based Meta-Learning method (MDNML) for speaker identifi-
cation. MDNML emphasizes the expeditious process of learn-
ing to recognize new users where each has only a few seconds
of labeled data.

We conduct experiments on the LibriSpeech dataset and
compare MDNML with four state-of-the-art baseline meth-
ods. The results conclude that MDNML achieves higher ac-
curacy in recognizing new users with limited labeled utter-
ances than all baseline methods. Our proposed solution sig-
nificantly expedites the learning by transferring the knowl-
edge learned from the existing user base through gradient-
based meta-learning. We consider our work to be a stepping-
stone for more sophisticated meta-learning frameworks for
accelerating voice recognition. Furthermore, we discuss a
strategy for enhancing the accuracy by incorporating the no-
tion of household-based acoustic profiles with MDNML.

Index Terms— mixture density networks, meta-learning,
new users, speaker identification

1. INTRODUCTION

A recent report1 in 2018 shows that smart speakers have
gained an installed user base of nearly one in every four
U.S. adults or 50+ million users. These smart speakers
equipped with voice recognition technology, also known as
speaker identification, which answers the fundamental ques-
tion “Who is speaking?” The answer to the question enables

1https://voicebot.ai/wp-content/uploads/2018/11/voice-assistant-
consumer-adoption-report-2018-voicebot.pdf

various downstream applications to provide a personalized
experience.

Speaker identification has been studied as a supervised
classification problem based on the characteristics of voices.
Traditionally, the prevalent solution is based on i-vector
representation of speech segments [1], which is combined
with the improvement over the Gaussian Mixture Model-
Universal Background Models (GMM-UBMs) [2]. Recently,
deep learning-based methods have been gaining attraction
as they outperformed the prevalent i-vector solutions. Deep
speaker [3] utilizes residual networks to extract audio embed-
dings and optimizes triplet loss to perform speaker identifi-
cation. VGGVox [4] adopts a CNN-based residual network
to construct audio embeddings and optimizes contrastive loss
with pre-training based on softmax classification. Two other
Resnet-based methods utilize additive margin softmax classi-
fication loss [5] to improve the recognition accuracy in [6, 7].
SincNet [8] utilizes convolutional neural networks to learn
speaker recognition directly from raw audios.

Our work presumes new users always have very limited
labeled voice data, as Google Assistant and Amazon Alexa
only require a new user to repeat two to four prompts for
learning his/her voice. Unlike the aforementioned research
where existing users and new users are treated equally, we
develop a meta-learning approach targeting to expedite the
learning process for recognizing new users with limited train-
ing data. We foresee the need of expediting the learning
for new users as (1) smart speakers are gaining in popular-
ity where the report also shows that 30% of users are new
in 2018 and (2) the previous research [9] displayed that the
length of voice history of a user is positively correlated to
his/her identification accuracy.

Our proposed solution expedites the learning by trans-
ferring the knowledge learned from the existing user base
with a gradient-based meta-learning tactic (Section 2.2). We
use Mixture Density Networks (MDNs) [10] (Section 2.1) to
construct acoustic user profiles in that MDNs are gradient-
friendly and can model voice utterances with arbitrary lengths
so that we can then apply Model-Agnostic Meta-Learning
(MAML) [11] technique to achieve expeditious learning. Our
experiments demonstrate that our proposed solution, MD-
NML, when having only four seconds of voice data from
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new users, its accuracy outperforms the best/worst baseline
methods by 3.2%/5.8% (Section 3.2).

2. PROBLEM STATEMENT & METHODOLOGY

We formulate the objective of our work as the following. Sup-
pose the system has a set of existing users with registered
voice utterances as background training data. Given a set of
new users, with a short registered voice utterance for each
user as enrollment, and another short testing voice utterance
of a user within the new user set, the goal of this study is to
recognize the speaker identity behind the testing voice utter-
ance. For simplicity, we compare model performance based
on text-independent tasks and presume that new users have
very limited training data [9,12–14], for example, one to four
seconds.

To better explain how to construct users’ acoustic profiles
and how to transfer profiling knowledge from existing users to
new users, we illustrate the framework of MDNML in Fig. 1.

2.1. Mixture Density Networks

Mixture density networks (MDNs) are based on a mixture
density model that combines neural networks [10]. MDNs are
chosen in this work to construct acoustic profiles for users as
they are inherently flexible in sense that it can model voice ut-
terances with arbitrary lengths. Moreover, assuming the voice
print of a user can be sufficiently expressed by a short period
of time, each tiny time frame can contribute to one training in-
stance for the user, leading to a relatively adequate amount of
training data for new users. In addition, MDNs based on neu-
ral networks are gradient-friendly so that the gradient-based
knowledge transfer techniques are applicable.

In this work, we utilize mel-frequency cepstral coeffi-
cients (MFCCs) [15] to represent the voice characteristics
of users because MFCCs are capable of approximating the
human aural systems and widely applied in various voice
recognition tasks, such as speaker recognition [13, 16–18]
and speech synthesis [19–22]. More specifically, we utilize
a Gaussian mixture model (GMM)-based MDN. An MDN
maps a set of input MFCC features x to the parameters of
a GMM (i.e., mixture weights πm, mean µm, and variance
σ2
m), which in turn give a full probability density function of

a MFCC feature y, conditioned on the input x and the learned
modelM, p(y | x,M), Formally,

p(y | x,M) =
M∑
m=1

πm(x) · Φ(y;µm(x), σ2
m(x)), (1)

where M is the number of mixture components and πm(x),
µm(x), and σ2

m(x) correspond to the mixture weight, mean,
and variance of the m-th component conditioned on x. Φ is
the Gaussian mixture component.

To derive the parameters in a GMM-based MDN, MDN
first converts the input x using a multi-layer perceptron

(MLP) and obtains output z as:

z = fθ(x), (2)

where fθ(·) corresponds to a set of transformations in the
MLP network and θ denotes the set of parameters to be
learned. The total number of network outputs, i.e., the di-
mension of z, is (2c + 1) ×M where c corresponds to the
dimension of the MFCC features. M corresponds to the
number of mixture components in the MDN. Then, z is par-
titioned into three subsets z(π)m ∈ R1×1, z(µ)m ∈ R1×c, and
z
(σ)
m ∈ R1×c, which correspond to the outputs used to cal-

culate the GMM weights, means, and standard derivations,
respectively.

z = [z
(π)
1 , ..., z

(π)
M , z

(µ)
1 , ..., z

(µ)
M , z

(σ)
1 , ..., z

(σ)
M ]. (3)

After the partition, each subset is passed through a set of
specific transformations for conversion to the GMM weights,
means, and standard derivations as:

πm(x) =
exp(z

(π)
m )∑M

j=1 exp(z
(π)
j )

, (4)

µm(x) = tanh(z(µ)
m ), (5)

σm(x) = exp(z(σ)
m ). (6)

The use of the softmax function in Equation 4 constrains the
mixture weights to be positive and sum up to 1. Analogously,
Equation 6 constrains the standard deviations to be positive.

During training, these density parameters are passed to a
log likelihood calculator to compute the log likelihood of an
MFCC feature y, which is further utilized to define the loss
function for the MDN as follows:

L = −
N∑
n=1

log{
M∑
m=1

πm(x) · Φ(y;µm(x), σ2
m(x))}, (7)

where N is the number of MFCC vectors for a user. The
parameters of MDN only lie in the MLP network and these
parameters are optimized in such a way that the overall nega-
tive log likelihood in Equation 7 is minimized.

2.2. Knowledge Transfer via Gradient-based Meta-learning

The effective training of MDNs relies on sufficient training
data, which are usually unavailable for new users. To com-
pensate for the data deficiency, we develop a gradient-based
knowledge transfer module to leverage identification knowl-
edge grained from recognizing existing users. More precisely,
we learn a set of well-initialized model parameters over many
similar tasks so that it would be easier to reach the global op-
timal when training a new task.

Each task corresponds to the training process of creating
an acoustic profile of a user, where a profile is expressed by
an MDN. We optimize a set of parameters Ψ such that when
a gradient step is taken with respect to particular task ti, the
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Fig. 1: The framework of MDNML. During training, we learn a set of well-initialized model parameters Ψ by training acoustic
profiles of all existing users. To serve new users, we construct their acoustic profiles by adapting from Ψ.

parameters θi, derived from Ψ, are close to the optimal pa-
rameters for task ti, where θi = {π, µ, σ} denotes the model
parameters learned based on task ti. Let l(θi) denote the loss
of task ti based on the test set of ti. The entire loss over mul-
tiple tasks is given by:

L(Ψ) =
∑
i=1

l(θi). (8)

To update the initialization parameters Ψ, we have:

Ψ← Ψ− α∇ΨL(Ψ). (9)

To optimize each individual task ti, we have:

θi ← Ψ− β∇θi l(Ψ), (10)

where α is the meta-learning rate, and β is the learning rate
for each individual task, i.e., the training of a mixture density
model. Algorithm 1 shows the detailed training and adaption
processes of MDNML.

2.3. Speaker Identification in a Household

We now discuss how to utilize the constructed users’ acous-
tic profiles to conduct speaker identification given a short
voice utterance of a user in a household. Following GMM-
UBM [2], in addition to training an acoustic profile Mi for
each user i in the household, we also train a household-level
background acoustic profileMhbm using the mixtures of all
training utterances of the users in the household.

Given a user’s short voice utterance xj , we feed it into
the universal background profile and each individual acoustic
profile, with each profile yielding a vector of fitness scores.
Each vector of scores indicates how well the voice utterance
fit the corresponding acoustic profile. More specifically, we
use p(xj | Mhbm) and p(xj | Mi) to denote the scores
for the household-level profile and the profile of user i in

Algorithm 1: Acoustic profile training and adaption
1 Input: learning rate α, meta-learning rate β, maximal

number of iterations itrmax, inner update size Ttrain in
training, inner update size Tadapt in adaption
1: /* Training on the existing users */
2: for itr ≤ itrmax do
3: Sample a batch of existing users as U
4: for user i in U do
5: Sample a piece of audio of user i
6: θ

(0)
i = Ψ

7: for t ≤ Ttrain do
8: θ

(t)
i = θ

(t−1)
i − α∇

θ
(t−1)
i

L(θ
(t−1)
i )

9: Ψ = Ψ− β∇Ψ

∑
i∈U L(θ

(T )
i )

10:
11: /* Adaption on new users by fine-tuning*/
12: for new user j in Uadapt do
13: θ

(0)
j = Ψ

14: for t ≤ Tadpat do
15: θ

(t)
j = θ

(t−1)
j − α∇

θ
(t−1)
j

L(θ
(t−1)
j )

the household, respectively. Formally, the speaker identify
is given by:

arg max
i

f(1>0(p(xj | Mi)− p(xj | Mhbm))), (11)

where 1>0(·) is the vector-level indicator function and f(·) is
a counter, which calculates the number of 1’s in its input. By
introducing the household-level background profile, it allows
us to achieve speaker identification based on background-
proof voice frames, which potentially offers stronger discrim-
inative power.
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3. EXPERIMENTS

We conduct experiments on LibriSpeech data set to evaluate
the performance of MDNML against four popular algorithms.

3.1. Dataset and Experimental Settings

The experiments are conducted on the LibriSpeech dataset,
which is publicly available2. Table 1 shows the number of
speakers in the dataset. For the dataset, 75% of speakers are
treated as existing users and the remaining 25% of speakers
are treated as new users for the purpose of evaluation. We fol-
low the previous work [14] to extract acoustic features from
the raw audios. The first 20 MFCCs are extracted from speech
after an energy-based voice activity detection. A 44 kHz sam-
pling rate and a 25 ms hamming window with a 10 ms frame
shift are used during the MFCC construction.

Table 1: The number of speakers in the experimental dataset.

Dataset #(Female speakers) #(Male speakers) #(Total speakers)
LibriSpeech 125 126 251

Baseline Methods. To evaluate the performance of MDNML,
the following four methods are adopted as baselines.

• MDN [10] trains acoustic profiles for each new user from
scratch without any knowledge gained from existing users.

• PN [14] utilizes the CNN-based prototypical network,
a metric-learning-based few-shot technique, to conduct
speaker identification.

• PNL [13] relies on Bi-LSTM-based prototypical network to
perform speaker identification.

• AFEASI [9] applies adversarial training on prototypical net-
work to achieve speaker identification.

3.2. Identification Performance

In this section, we evaluate the performances of MDNML
against different baseline methods on the LibriSpeech dataset.
We adopt household-level accuracy as the evaluation metric.
The household-level accuracy first calculates the identifica-
tion accuracy in each household and then averages the iden-
tification accuracy in each household by treating the impor-
tance of them equally.

To imitate the scenarios of serving new users, we set the
duration of each enrollment utterance, which is used for pro-
file adaptions for the new users, to small values, varying from
2 to 4 seconds. Moreover, in order to offer instant identifica-
tion response, we vary the duration of each test voice utter-
ance from 1 second to 4 seconds. Tables 2 and 3 show the
performance of different methods on the LibriSpeech dataset.

We have four observations from the results on the Lib-
riSpeech dataset. First, in general, the longer the duration of

2LibriSpeech: http://www.openslr.org/12

Table 2: Accuracy with 2s voice enrollment.

Utterance duration in test 1s 2s 3s 4s
MDN 80.0% 83.4% 86.2% 87.8%

PN 85.8% 86.0% 88.0% 89.4%
PNL 82.8% 86.4% 85.8% 85.0%

AFEASI 86.6% 86.6% 89.4% 90.2%
MDNML 88.6% 88.6% 90.2% 91.4%

Table 3: Accuracy with 4s voice enrollment.

Utterance duration in test 1s 2s 3s 4s
MDN 85.8% 86.4% 88.2% 89.0%

PN 88.0% 87.6% 88.8% 89.2%
PNL 84.8% 86.0% 86.8% 87.2%

AFEASI 88.6% 89.0% 89.2% 89.8%
MDNML 89.6% 90.4% 92.2% 93.0%

a voice utterance for identification in test, the higher accuracy
each method can achieve. For example, when we have 2 sec-
onds long voice utterance as the enrollment for profile adap-
tion and 1 second long voice utterance to identify the speak-
ers with testing data, MDN can reach only 80% accuracy;
however, the accuracy increases to 83.4%, 86.2%, and 87.8%
when the test voice utterance becomes to 2, 3, and 4 seconds,
respectively. Note that this observation generally applies to all
methods. The performance gain stems from the fact that the
acoustic signals embedded in long voice utterances are more
consistent and reliable. These consistent and reliable acoustic
signals further yield confident speaker identifications, which
are more accurate. Second, the longer the voice enrollment
we have for a new user during the adaption process, the higher
accuracy each method can achieve. It makes sense because
the longer the voice enrollment for a user, the richer signals
we can use to construct his/her acoustic profile by analyz-
ing the enrolled utterance. Profile constructions, supported
by rich acoustic information, contribute to the high accuracy.
Third, we observe that PN, PNL, AFEASI, and MDNML gen-
erally outperform MDN. This shows the advantages of utiliz-
ing few-shot learning, which allows effective learning even
with limited data. Fourth, MDNML consistently achieves the
highest accuracy comparing with the four baselines in all set-
tings. It demonstrates the effectiveness of MDNML, which
leverages knowledge learnt from existing users.

4. CONCLUSION

We present MDNML, a framework that combines mixture
density network (in acoustic profile creation) and model-
agnostic meta-learning (in transferring knowledge) to achieve
expeditious learning for speaker identification tasks. The pro-
posed solution alleviates the unpleasant difficulty of learning
(new) user voice with training data deficiency. Our experi-
ments on LibriSpeech dataset show that the proposed solution
outperforms the four baseline methods: MDN, PN, PNL, and
AFEASI.
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