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ABSTRACT
Search engine users always endeavor to reformulate queries during
search sessions for articulating their information needs because
it is not always easy to articulate the search intents. To further
ameliorate the reformulation process, search engines may provide
some query suggestions based on previous queries. In this paper,
we propose Reformulation Inference Network (RIN) to learn how
users reformulate queries, thereby benefiting context-aware query
suggestion. Instead of categorizing reformulations into predefined
patterns, we represent queries and reformulations in a homomor-
phic hidden space through heterogeneous network embedding. To
capture the structure of the session context, a recurrent neural
network (RNN) with the attention mechanism is employed to en-
code the search session by reading the homomorphic query and
reformulation embeddings. It enables the model to explicitly cap-
tures the former reformulation for each query in the search session
and directly learn user reformulation behaviors, from which query
suggestion may benefit as shown in previous studies. To generate
query suggestions, a binary classifier and an RNN-based decoder
are introduced as the query discriminator and the query generator.
Inspired by the intuition that model accurately predicting the next
reformulation can also correctly infer the next intended query, a
reformulation inferencer is then designed for inferring the next
reformulation in the latent space of homomorphic embeddings.
Therefore, both question suggestion and reformulation prediction
can be simultaneously optimized by multi-task learning. Extensive
experiments are conducted on publicly available AOL search engine
logs. The experimental results demonstrate that RIN outperforms
competitive baselines across various situations for both discrimina-
tive and generative tasks of context-aware query suggestion.
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1 INTRODUCTION
Although search engines have already become indispensable in our
daily life, the difficulty of deciding the ideal queries is everlasting.
The search intents are often sophisticated while queries are usually
not only short but also ambiguous [9]. As a consequence, in order to
refine the search results, users have to articulate their information
needs by reformulating the queries. The burden is on users. To
make searching easier, most modern search engines turn to query
suggestion that provides recommendations for next queries. Be-
cause users may be unfamiliar with the topics or the vocabulary
for formulating queries, the concise suggestions can further accel-
erate search satisfaction. Moreover, query suggestion also benefits
various applications such as query auto-completion.

To capture the search intents, it is intuitive to exploit the context
information, including previous queries and click-through informa-
tion in the same search session. The idea of utilizing the context has
been widely studied in both query suggestion [5, 8, 20, 23, 35, 45]
and query auto-completion [4, 10, 44]. Many conventional context-
aware methods solely rely on query association or similarity be-
tween queries. For example, reused terms [4, 23, 44] and query co-
occurrence [5, 20, 29, 35, 45] are advantageous to discover promising
queries. However, query association and similarity based methods
suffer from data sparsity. Even though some works [8, 9] attempt to
alleviate the hardship by clustering queries based on click-through
data, query clusters can still be too sparse to raise the roof of the
limitations. In addition, queries in search sessions are issued suc-
cessively, but the order of queries is generally ignored by query
co-occurrence and similarity. The search sessions are not only di-
verse but also highly complicated, so methods considering only
query association or similarity may fail in learning how users re-
formulate queries.

Fully understanding query reformulations is the grail of context-
aware query suggestion because the context of search sessions are
affected by reformulating queries to refine search results. To analyze
reformulation behaviors, pioneer researchers categorized query re-
formulations into predefined strategies [13, 24]. More specifically,
these reformulation strategies can be typecast into syntactic and
semantic reformulations. Syntactic reformulations consist of pre-
defined syntactic changes between queries such as adding terms,
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deleting terms, and acronym expansion [6, 24]. The clear defini-
tions of syntactic reformulation strategies come in handy to design
features for machine learning models of query suggestions [27].
On the contrary, semantic reformulations incorporate strategies
changing the meanings of queries such as generalization and spe-
cialization [2]. In practice, the semantic interoperability of queries is
usually achieved by resorting to established ontologies, thereby ex-
teriorizing semantic reformulations for query suggestion [2, 25, 26].
However, most of the reformulation-based methods are restricted
and count on predefined reformulation strategies or assistance of
ontologies, suffering from out-of-scope strategies and ambiguous
queries.

The growth of deep learning, especially recurrent neural net-
works (RNNs) on sequences, provides the opportunity to generalize
the use of reformulations in query suggestion. Followed by the suc-
cess in machine translation [3, 47], sequence-to-sequence (seq2seq)
models based on RNNs are adopted for query suggestion [14, 46].
The seq2seqmodels read the previously issued queries as a sequence,
and then freely generate a sequence of terms as the suggested query.
The terms of each query can be also treated as a sequence to derive
information through another RNN [46]. Furthermore, since diverse
search sessions increase the difficulty of learning reformulations,
Dehghani et al. [14] decompose the generation of a query into re-
formulation strategies of appending and copying terms. However,
there are a few shortcomings of existing deep learning based meth-
ods in query suggestion. First, although reformulations have been
guided during generation [14], reformulations in the context still
remain an open problem. The lack of understanding of previous
reformulations can result in unsatisfactory query suggestions as
shown in previous studies [2, 27]. Second, predefined strategies are
too restricted to learn sophisticated reformulations that can be hard
to decompose or even out of the scope. A better representation
of reformulation is needed. Last but not least, although to some
degree RNNs consider the transition between queries in the search
session, models can still have a hard time learning reformulations
because relationships between queries are sparse and implicit. As a
consequence, existing RNN-based models [14, 46, 50] rely on addi-
tional features for discriminative query suggestion and hence often
fail in predicting the intended query.

In this paper, Reformulation Inference Network (RIN) is proposed
to address the limitations. More precisely, we focus on modeling
reformulation behaviors for query suggestion with the reformu-
lation representations capturing both syntactic and semantic rela-
tions. The system of homomorphic query embedding based on term
embeddings is first introduced to preserve the syntactic property
of reformulations. In addition, a heterogeneous network embed-
ding model integrates click-through data in search logs into the
foundational term embeddings to capture semantic reformulations.
Simultaneously reading both the query and the recent reformula-
tion for each step, RIN encodes the search session into a context
vector by an RNN with the attention mechanism [3]. The reformu-
lation inferencer then improves the capability of the context vector
by predicting the next reformulation. Based on the context vec-
tor, multi-task learning is employed to train a query discriminator
and a query generator with the reformulation inferencer. We then
can utilize the model to suggest queries. Here we summarize our
contributions in the following.

• To the best of our knowledge, this paper is the first work to
model user behaviors based on queries and reformulations with
homomorphic encoding that simultaneously preserves syntactic
and semantic properties. The general and flexible representations
can benefit the learning of how users reformulate queries along
search sessions for query suggestion.
• We propose the framework RIN that deals with the data spar-
sity by inferring not only the intended query but also the next
reformulation for query suggestion. More specifically, the refor-
mulation representations enable the opportunity to leverage the
knowledge across syntactically and semantically similar reformu-
lations. When the model becomes more proficient in forecasting
the next reformulations, the ability to discriminate and generate
suggested queries can be also sharpened as well with multi-task
learning.
• Experiments conducted on the publicly available AOL search en-
gine logs demonstrate that RIN significantly outperforms existing
methods for either discriminative or generative query suggestion.
A study of parameter sensitivity then indicates the robustness of
the proposed framework.
In the rest of this paper, we present the related work in Section 2

and formally define two different query suggestion tasks in Sec-
tion 3. The framework RIN is then clearly described in Section 4.
We finally show the experimental results in Section 5 and give some
conclusions in Section 6.

2 RELATEDWORK
2.1 Query Suggestion and Auto-Completion
To understand search intents behind queries, the context informa-
tion including previous queries and click-through data is usually
employed for query suggestion and query auto-completion. Most
of the existing studies rely on query association and query sim-
ilarity in the search session. For example, association rules [16]
and co-occurrence [15, 23] can be mined and calculated for query
suggestion. The connections between consecutive queries can be
also learned by a query-flow graph [5] or Markov models [8, 20].
The cosine similarity [4, 23] and the edit distance [10] are popular
metrics to recommend queries that are similar to the context. To
deal with the problems of data sparsity, some works attempt to clus-
ter queries into denser groups. For instance, a bipartite graph based
on click-through data can be built for discovering queries with
similar concepts [9, 34, 35, 51]. The word distributions of queries
can be also utilized for EM clustering [18]. In addition to clustering,
machine learning frameworks with statistical features can also par-
tially alleviate the sparsity problem [40, 43, 44]. To learn how users
reformulate queries, Jiang et al. [27] model syntactic reformulations
based on predefined reformulation strategies. Well-established on-
tologies can also be leveraged to learn semantic reformulations [26].
Recently, Sordoni et al. [46] propose to suggest queries with a hi-
erarchical RNN as the first study of query suggestion with deep
learning. Dehghani et al. [14] then improve the approach by decom-
posing the generation process into two reformulation strategies.
Wu et al. [50] take the implicit user feedback into account to better
rank queries for suggestion.

However, most of the previous methods do not consider user
formulations while the remaining methods rely on few predefined
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reformulation strategies or established ontologies. Especially for
the state-of-the-art RNN-based methods [14, 46, 50], all of them fail
in solely predicting the intended queries and rely on other features.
Our approach differs from these works in that reformulations are
explicitly represented over the search session, thereby directly ben-
efiting the model to predict the next reformulation without any
additional feature.

2.2 Query Reformulation
Query reformulation is the process that users refine the preceding
queries in order to obtain more satisfactory search results. Pre-
vious studies focus on determining and predicting reformulation
strategies [13, 24]. These reformulation strategies can be analyzed
in two aspects, including syntactic and semantic reformulations.
The syntactic reformulations are the changes of terms between
queries, such as adding and removing terms [6]. The semantic re-
formulations address the changes of topics behind queries, such as
generalization and specialization of the concepts [2]. Most of the
works attempt to manually define reformulation strategies based
on the above two aspects. For example, Boldi et al. [5] design four
predefined strategies of query transition while Huang and Efthimi-
adis [24] classify reformulations into 15 different types. However,
predefined reformulation strategies can be too limited to describe
reformulations in general and sparse data. In this work, we propose
to illustrate reformulations with representations instead of relying
on a set of predefined reformulation strategies.

In addition to query suggestion [27], understanding reformula-
tions is also beneficial to many other applications. Lee et al. [33]
determine the term effectiveness for improving the search quality.
Based on reformulations in a search session, the search results can
be further personalized [25]. Ren et al. [42] leverage the concept
of query reformulation to understand conversation logs. All of
these works demonstrate not only the effectiveness but also the
robustness of learning reformulations.

2.3 Query and Reformulation Embedding
Although word embedding [36] has been well-studied and suc-
cessfully employed in many NLP tasks, the journey of embedding
techniques for IR has just begun. Clinchant and Perronnin [12]
concatenate continuous word embeddings for representing queries
and documents. Zheng and Callan [54] employ a weighted com-
bination of word embeddings for better representations and more
satisfactory search results. To directly optimize representations for
relevance ranking, query embeddings can be learned by ranking
models [52, 53]. However, none of these methods derives embed-
dings for demonstrating reformulations.

To learn the distributed representations of reformulations, Mitra
[37] proposes the first and the only work to measure the reformula-
tion embeddings by the vector between query embeddings based on
a convolutional neural network. However, the approach has some
shortcomings. First, other queries and click-through data in search
sessions are not considered while deriving query embeddings. As a
consequence, the semantic information in the context is unfortu-
nately ignored. Second, the embedding system is not homomorphic.
In other words, reformulations on queries will not directly reflect
upon the corresponding embeddings. To address these problems,

in this study, RIN models reformulations over search sessions by
the homomorphic embeddings that preserve both syntactic and
semantic information.

3 PROBLEM STATEMENT
In this section, we first formally define the objectives of this paper. A
search session can be formally represented as a sequence of queries
⟨q1,q2, · · · ,qL⟩ submitted successively by a single user within a
time interval. Each query q is composed of a set of terms T (q) and
associated with the corresponding click-through information u,
which is a set of clicked URLs. Suppose the user intends to submit a
query qL+1 after the search context ⟨q1,q2, · · · ,qL⟩. The two goals
of this paper are listed as follows:
(1) Discriminative Query Suggestion: Given a set of candidate

queries Qcan , we would like to give a ranking of candidates
qcan ∈ Qcan so that qL+1 ranks as high as possible. Some
previous work [46] also call this task next-query prediction.

(2) Generative Query Suggestion: Different from the discrimi-
native task, the generative task does not rely on candidate sets.
With only the search context, generative query suggestion aims
to generate a query q′L+1, which is expected to be as similar as
possible to the intended query qL+1 based on some similarity
measures, such as cosine similarity and position independent
word error rate [14].

For simplicity, the context is referred to as the search context
⟨q1,q2, · · · ,qL⟩; the context length is the number of queires in
the search context.

4 REFORMULATION INFERENCE NETWORK
In this section, we present the proposed framework, Reformulation
Inference Network (RIN), for modeling queries in search sessions.

4.1 Framework Overview
Figure 1 demonstrates the general schema of RIN. Themodel mainly
consists of four components, including query session encoder, re-
formulation inferencer, query discriminator, and query generator.
Based on reformulation representations derived from homomor-
phic query embeddings, the query session encoder wraps the search
session into a vector using a recurrent neural network and session-
level attention. The reformulation inferencer plays the main role in
RIN to infer the next query reformulation with the encoded vector
from the query session encoder. Finally, to solve either the discrim-
inative or generative task, the query discriminator and generator
can be learned with the reformulation inferencer by multi-task
learning.

4.2 Distributed Reformulation Representation
We first formally define how to represent reformulations in our
model. For syntactic reformulations, some works designed several
discrete features to measure reformulations [27]; other works sim-
plified reformulations as a few basic syntactic operations, such as
copying a term from the context and appending a new term [14].
For semantic reformulations, the topics of queries can be utilized to
observe the changes of concepts behind queries [26]. In this paper,
we propose to model reformulations from both perspectives.
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Figure 1: The schema of the proposed Reformulation Inference Network (RIN).

Inspired by homomorphic encryption that allows computations
on ciphertexts [38], we want to design an embedding system that
can reflect reformulations with subtraction computations. Theo-
retically, every reformulation can be syntactically factorized into
adding and removing terms. Based on this concept, we come up
with the homomorphic query embedding to represent each query as
follows:

Definition 4.1 (Homomorphic Query Embedding). Suppose that
every term t has a representative embeddingvt . The homomorphic
embedding of a query q is defined as:

vq =
∑

t ∈T (q)

vt ,

where T (q) consists of all terms in the query.

Based on the homomorphic query embeddings of queries, the re-
formulation ri from qi to qi+1 can be represented as the difference
between embeddings as follows:

vqi+1 −vqi ,

which can be also considered as a vector from qi to qi+1 in the
hidden space of homomorphic query embeddings. There are at least
three benefits to apply homomorphic query embeddings to perform
reformulations. First, the syntactic relations are homomorphically
preserved as adding and subtracting term embeddings. Second, the
latent space of embeddings also implicitly captures the semantic
information of queries. Last but not least, the linear substructures
of embeddings [36, 41] are helpful to understand the semantic
relationships between reformulations and offer high interpretability.
For example, the reformulation from “Japan travel” to “Tokyo
travel” can be shown asvTokyo −vJapan, which is close tovRome −

vItaly from “Italy hotel” to “Rome hotel” under the country-
capital reformulation substructure.

In this paper, we propose to exploit heterogeneous network
embedding to learn the features of queries and terms. To learn
the semantics of queries, term dependencies [32, 36, 41] and click-
through data [26, 28, 34, 35] have been demonstrated to be useful.
Here we propose to unify terms, queries, click-through data, and
their relationships using a heterogeneous network. Figure 2 shows

Consecutive Queries
Click-through InformationQuery-Term Relations

Consecutive Terms

Query

Term

Website

baseball

sport

matches

basketball

exciting

baseball
matches

sport
matches

basketball
matches exciting

basketball
matches

MLB.com ESPN.com NBA.com

Figure 2: An example of the heterogeneous network con-
structed by a search session of four queries for deriving term
embeddings. Note that the queries in the graph are auxiliary
nodes connecting the domains of terms and websites.

an example of the network constructed by a search session of four
queries. Each of terms, queries, and websites has a representative
node in the network. Consecutive terms in each query and consec-
utive queries in each search session are connected. Each query also
links to the first term and has bidirectional edges to the relevant
websites clicked in the training logs. Finally, any of network embed-
ding methods can be applied. Here node2vec [17], which is one of
the state-of-the-art methods, is utilized to learn term embeddings
as the base of homomorphic query embedding.

4.3 Query Session Encoder
The encoder of query sessions in RIN is a bidirectional recurrent
neural network (Bi-RNN) with attention. The input of the encoder
is a sequence X = [x1,x2, · · · xL], where xi = [vqi ;ri−1] con-
catenates the homomorphic query embedding vqi and the refor-
mulation ri−1 from the last query qi−1 for each query qi in the
search session. Note that r0 is set as a zero vector because the first
query has no reformulation. The Bi-RNN reads the input sequence
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twice as the forward pass and the backward pass. During the for-
ward pass, the Bi-RNN creates a sequence of forward hidden states
−→
h = [

−→
h1,
−→
h2, · · · ,

−→
hL], where

−→
hi = RNN(

−−−→
hi−1,xi ) is generated by a

dynamic function such as LSTM [22] and GRU [11]. Here we use
GRU instead of LSTMbecause it requires fewer parameters [30]. The
backward pass processes the input sequence in reverse order. The
backward hidden states are then generated as

←−
h = [

←−
h1,
←−
h2, · · · ,

←−
hL],

where
←−
hi = RNN(

←−−−
hi+1,xi ). Finally, the forward and backward hid-

den states are concatenated as the encoder hidden representations
h = [h1,h2, · · · ,hL], where hi = [

−→
hi ;
←−
hi ].

Since each query in the search session can have unequal impor-
tance for inferring the next query, the attention mechanism [3] is
introduced to extract and aggregate representations that are more
important than others. More specifically, the representation hi will
first be transformed by a fully-connected hidden layer to ui to
measure the importance αi as follows:

ui = tanh(Fs (hi )),

αi =
exp(uTi us )∑
i′ exp(uTi ′us )

,

where Fs is the fully-connected hidden layer; tanh is chosen as the
activation function for the convenience of similarity computation;
us is a vector to measure the importance by computing uTi us . Fi-
nally, the normalized importance αi is obtained through a softmax
function. The context vector c can be represented as the weighted
sum of the encoder hidden representations h as follows:

c =
∑
i
αihi .

4.4 Reformulation Inferencer
To enhance the capability of inferring the intended query, we as-
sume that a model that accurately predicts the next reformulation
can also correctly forecast the next query. More precisely, the in-
tended query qL+1 is equivalent to the reformulation rL with the
last query qL . Additionally, inferring reformulations is more train-
able than directly predicting next queries because similar reformu-
lations may be shared across different queries.

The aim of the reformulation inferencer is to predict the next re-
formulation rL = vqL+1 −vqL established by homomorphic query
embeddings. Taking the context vector c , the reformulation in-
ferencer first applies a fully-connected hidden layer for the non-
linearity of prediction as follows:

ur = ReLU(Fhr (c)),

where ReLU(·) is the rectified linear unit [39] as the activation
function; Fhr (·) is the fully-connected layer. The predicted refor-
mulation ˆrL can then be modeled as a linear combination of the
result as follows:

ˆrL =Wrur + br ,

whereWr andbr are theweights and the biases for the combination.
If the predicted reformulation ˆrL is close to the actual reformulation
rL , the model should also have considerable potential to infer the
next query qL+1.

4.5 Query Discrimination and Generation
The reformulation inferencer predicts the next reformulation, but
the tasks mentioned in Section 3 cannot directly be solved by refor-
mulations represented as homomorphic embeddings. Hence, query
discriminator and query generator are proposed to directly solve
discriminative and generative tasks, respectively.
Query Discriminator. Given a candidate query qcan and the con-
text vector c from the query session encoder, the goal of the query
discriminator is to assess how likely qcan is the intended query.
More precisely, we want to predict a probabilistic score ŷ to approx-
imate the probability of being the intended query

y = P(qcan = qL+1 | ⟨q1,q2, · · · ,qL⟩)

for each candidate query qcan .
The input of the query discriminator concatenates the homo-

morphic query embedding of qcan and the context vector c as
xd = [vqcan ;c]. The probabilistic score ŷ can then be generated by
a sigmoid unit with a fully-connected hidden layer as follows:

ud = ReLU(Fhd (xd )),
ŷ = σ (Fd (ud )),

where Fhd (·) and Fd (·) are two fully-connected hidden layers;
ReLU(·) is the activation function for the hidden layer; σ (·) is the
logistic sigmoid function [19].
Query Generator.Without any candidate query, the query genera-
tor aims to produce a sequence of terms as the generated queryq′L+1
that estimates the intended query qL+1. Inspired by seq2seq [3, 47]
in machine translation, the query generator is designed as a decoder
to generate a sequence of terms based on the output of the query
session encoder.

The query generator as a decoder also relies on RNN. To generate
the t-th termwt , the hidden state of RNN can be computed based
on the last predicted querywt−1 as follows:

st = RNN (st−1, [wt−1;ct ]),

where ct is the context vector of the t-th term; similar to the query
session encoder, the dynamic function RNN (·) is GRU in the ex-
periments. Instead of always using the general context vector c , ct
estimates a more appropriate context vector because each query in
the context may play different role in generatingwt . More precisely,
the last hidden state of the decoder st−1 is taken into account to
compute the importance and construct the dynamic context vector
ct as follows:

ut ,i = tanh(Fд([st−1;hi ])),

αt,i =
exp(uTt ,iuд)∑
i′ exp(uTt ,i ′uд)

,

ct =
∑
i
αt,ihi ,

where Fд(·) is a fully-connected hidden layer. Based on ct , we fur-
ther define the conditional probability for generatingwt as follows:

P(wt | w1, · · · ,wt−1,c) = f (st ),

where f (·) is a projection layer that estimates the conditional dis-
tribution over the vocabulary.
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4.6 Learning and Optimization
The multi-task learning is applied to simultaneously train different
components in RIN. Each of the reformulation inferencer, the query
discriminator, and the query generator has a corresponding loss
function jointly optimized with other components.

For the reformulation inferencer, the loss function lossR opti-
mizes the distance between the actual reformulation rL and the
predicted reformulation ˆrL as follows:

lossR =
1
2
| |rL − ˆrL | |2F ,

where | | · | |F is the Frobenius norm [49].
For the discriminative tasks, the query discriminator solves a

binary classification problem. Hence the loss function lossD focuses
on reducing the binary cross-entropy [21] between the predicted
probabilistic score ŷ and the gold standard y as follows:

lossD = − (y log(ŷ) + (1 − y) log(1 − ŷ)) ,

where y is a binary indicator demonstrating if the candidate query
qcan is the intended query qL+1.

To solve the generative tasks, the query generator produces a
probability distribution over the vocabulary, so the loss function
lossG can be modeled by the cross-entropy between the generated
sequences of words and the actual intended query as follows:

lossG = −
∑
wt

log P(wt | St ),

where wt is the t-th term in the intended query, and St is the
preceding terms ofwt .

Finally, the objective of multi-task learning combines the loss
functions of different components as follows:

loss = lossR + losstask,

where losstask can be either lossD or lossG based on the task to
be solved. Moreover, the loss can also consider both of the loss
functions, such as lossD + lossG , to simultaneously solve both
problems.

5 EXPERIMENTS
In this section, we conduct extensive experiments and in-depth
analysis to verify the performance and robustness of RIN for both
discriminative and generative query suggestions.

5.1 Datasets and Experimental Settings
Datasets. We adopt the largest publicly available AOL search logs
for experiments as previous studies [4, 26, 27, 44, 46, 50, 52, 53]. The
3-month dataset consists of queries submitted to the AOL search
engine from 1 March, 2006 to 31 May, 2006. We first remove all
non-alphanumeric characters and rare queries with less than ten
occurrences in the whole log. The query logs are then segmented
into sessions with a 30-minute threshold as the session boundary.
Single-query sessions with only a single query are discarded be-
cause there must be at least one preceding query as the context for
context-aware approaches. Every query with at least a preceding
query as the context information is treated as the ground truth of
the intended queries. The pre-processing process in this paper is
consistent with previous studies [26, 27, 44]. To partition search

Table 1: The statistics of queries with different context
lengths in the training and testing datasets.

Context Length
Dataset Short Medium Long

(1 query) (2-3 queries) (4+ queries)
Training 852,350 386,970 118,180
Testing 403,772 184,843 58,944

sessions into training and testing sets, the first 2-month data are uti-
lized for training while the remaining sessions are the testing data.
Among the training data, 10% of sessions are randomly sampled as
the validation set for parameter tuning. Finally, there are 1,357,500
training queries within 852,350 sessions and 647,559 testing queries
within 403,772 sessions. Furthermore, to evaluate the performance
using different context lengths, the testing set is partitioned into
three subsets, including Short Context (1 query), Medium Context
(2 to 3 queries), and Long Context (4 or more queries). As a result,
Table 1 shows the statistics of queries with different context lengths
in the training and testing datasets.
Evaluation. Similar to previous studies [14, 46, 50], the evaluation
of discriminative query suggestion relies on candidate queries. The
top-20 queries based on the frequency of the co-occurrences with
the last query in the context are selected as candidate queries asMost
Popular Suggestion (MPS) [14, 46] for re-ranking. The re-ranked
results can then be evaluated by mean reciprocal rank (MRR). For
generative query suggestion, we follow the previous study [14]
to employ the position independent word error rate (PER) [48] to
estimate the word overlap based similarity between the generated
queries and the actual intended queries.
Implementation Details. The model is implemented by Tensor-
Flow [1]. The Adam optimizer [31] is adopted to optimize the param-
eters and perform back-propagation algorithm based on gradients.
The initial learning rate and the dropout parameter are set as 10−3
and 0.5. After the parameter tuning with the validation set, the
number of hidden neurons for GRUs is set as 128, and the number
of dimensions for homomorphic embeddings is 256.
Baseline Methods. To evaluate the performance of RIN, we com-
pare with the following baseline methods in different categories.

• Most Popular Suggestion (MPS) [14, 46] is a maximum likelihood
method, which relies on “wisdom of the crowd” and ranks queries
by the co-occurrence to the last query in the context. Note that
the candidate queries in the experiments are generated by MPS.
• Query-based Variable Markov Model (QVMM) [20] learns the
probability of query transitions over sessions with the variable
memory Markov model implemented by a suffix tree.
• Hybrid Suggestion (Hybrid) [4] considers both the context infor-
mation and the popularity by ranking candidate queries based
on a linear combination between the popularity (i.e., MPS in this
paper) and the similarity to recent queries.
• In addition to the popularity of queries, Personalized Completion
(PC) [44] also incorporates the personal query logs as long-term
history to provide a personalized ranking model based on Lamb-
daMART [7], which is one of the state-of-the-art ranking models.

Session 1E: Interactive IR 1 CIKM’18, October 22-26, 2018, Torino, Italy

202



RIN: Reformulation Inference Network for Context-AwareQuery Suggestion CIKM ’18, October 22–26, 2018, Torino, Italy

Table 2: The MRR performance of different methods in the testing sets with different context lengths for the task of discrim-
inative query suggestion. All improvements of our approach over baseline methods are statistically significant at the 95%
confidence level in a paired t-test.

Dataset MPS [14, 46] Hybrid [4] PC [44] QVMM [20] RC [27] HRED [46] ACG [14] RIN
Overall Context 0.5471 0.5823 0.5150 0.5671 0.6202 0.6207 0.6559 0.8254

Short Context (1 query) 0.5680 0.5822 0.5343 0.5862 0.5960 0.6100 0.6471 0.8361
Medium Context (2 to 3 queries) 0.5167 0.5841 0.4865 0.5338 0.6689 0.6489 0.6542 0.8190
Long Context (4 or more queries) 0.4826 0.5768 0.4575 0.5026 0.6704 0.6122 0.6669 0.7611

• Reformulation-based Completion (RC) [27] is the only non-deep
learning baseline method exploiting query reformulation. 43
reformulation-based features are proposed to capture user refor-
mulation behaviors over search sessions with LambdaMART.
• Hierarchical Recurrent Encoder-Decoder (HRED) [46] and Seq2Seq
with Copiers (ACG) [14] are deep learning based query sugges-
tion methods. HRED constructs a hierarchical encoder-decoder
structure to model the sequential and hierarchical dependencies
across terms and queries. ACG extends the seq2seq structure to
read the terms in the search session and then learn whether to
copy the used term or to add a new term.
Note that two deep learning baseline methods HRED and ACG

solve the discriminative tasks by requiring an external feature set
to train a LambdaMART model. Although our approach is also a
deep learning based method, the query discriminator of RIN can
address the task without any support of external features.

5.2 Experimental Results
Discriminative Query Suggestion. We first evaluate the perfor-
mance for discriminative query suggestion. Table 2 shows the MRR
performance of different methods over various context lengths.
Note that a high MRR score indicates the actual intended queries
are ranked more favorably.

The hybrid suggestion method (Hybrid) slightly boosts the sug-
gestion performance of the popularity-based baseline method (MPS)
by considering the similarity between candidate queries and the
local context. On the contrary, the performance of the personal-
ized completion method (PC) drops after considering the historical
logs of users as long-term historical data. It is because an enor-
mous amount of users in the search logs have only little or even
no historical data so that the sparsity causes a severe over-fitting
phenomenon. QVMM based on a variable-memory Markov model
is also marginally better than MPS but not as well as Hybrid. The
reason can be explained by the complicated search sessions that are
too sparse to be modeled by query dependencies as shown by the
lower performance with longer context. The reformulation-based
completion method (RC) is the best non-deep learning method in
the experiments. The promising results of the reformulation fea-
tures used in RC show again that reformulations are helpful for
modeling search sessions as previous studies [14, 27]. Two deep
learning methods, HRED and ACG, outperform all of the other
baseline methods because RNNs carefully capture the sequential
information of terms and queries in search sessions. ACG is further
better than HRED since two reformulation strategies are considered
in the model. As the proposed approach in this paper, RIN surpasses
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Figure 3: The MRR improvment of four methods over the
MPS baseline method with different context lengths.

all of the baseline methods. More precisely, RIN achieves 50.87% and
25.83% improvements in the dataset of overall context over MPS and
ACG, respectively. It is also worth noting that the improvements
are consistent across all datasets with different context lengths. All
of these improvements are significant at the 95% confidence level
in a paired t-test.

To discuss the performance with different context lengths, we
investigate the improvements of all methods over the naïve base-
line method MPS because the performance on different datasets
is not comparable. Figure 3 shows the improvements of three best
baseline methods and RIN over MPS with different context lengths.
It is reasonable to see the improvements are generally greater with
longer contexts because sequential information and reformulations
are more sufficient in longer sessions. An interesting observation is
that the improvements of RIN over MPS are similar in the datasets
of medium and long contexts. It demonstrates that RIN needs fewer
queries to understand the search intents of users. The other observa-
tion is that RC outperformsHRED and achieves similar performance
to that of ACG while there are multiple queries in the context. The
results indicate reformulations are hard to be instinctively captured
by RNNs. As a consequence, as shown in Table 2, HRED performs
worse with long contexts, compared to other baselines considering
reformulations as predefined features and strategies. Furthermore,
RIN effectively learns reformulations and achieves the best perfor-
mance.
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Table 3: The PER performance of three methods. The im-
provements of our approach over baseline methods are sta-
tistically significant at the 95% confidence level in a paired
t-test.

Dataset HRED [46] ACG [14] RIN
Overall 0.8069 0.6925 0.6612

Short (1 query) 0.8179 0.7015 0.6851
Medium (2 to 3 queries) 0.8338 0.6733 0.6197
Long (4 or more queries) 0.6753 0.6673 0.6115
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Figure 4: The MRR performance of RIN with either or both
of homomorphic query and reformulation embeddings. Q
denotes the homomorphic query embeddings while R indi-
cates the embeddings of reformulations.

GenerativeQuery Suggestion.Herewe evaluate the performance
for generative query suggestion. Note that only HRED and AGC are
compared as the baseline methods because other methods are not
generative models. PER as the evaluation metric treats each query
as a bag of words and measures the difference between word sets.
A low PER indicates high coverage of the predicted query to the in-
tended query. Table 3 shows the PER performance of RIN and both
baseline methods. Among two baseline methods, ACG outperforms
HRED because of the consideration of reformulations. For HRED,
it is interesting that PER dramatically improves when it comes to
the long context dataset. It may be because longer contexts have
more queries to capture the user behaviors. The proposed approach
RIN outperforms both two baseline methods. More specifically, RIN
obtains 22.02% and 4.72% improvements over HRED and ACG. For
different context lengths, the improvements are greater with longer
contexts. For instance, the improvement over ACG with short con-
texts is only 2.39%, but RIN improves ACG by 8.64% and 9.13% for
the datasets of medium and long contexts, respectively. In addition,
these results are also consistent with Figure 3 in the experiments
of discriminative query suggestion.
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Figure 5: The MRR performance of RIN with homomorphic
and non-homomorphic embeddings. Note that RINNH re-
places the original homomorphic query embeddings with
non-homomorphic query embeddings from node2vec.

5.3 Analysis and Discussions
In this section, we first analyze the effectiveness of the proposed
model and then study the sensitivity of parameters.

Effectiveness of Homomorphic Embedding. We first investi-
gate the effectiveness of the proposed homomorphic embedding of
queries reformulations for query suggestion. As a leave-one-out
analysis, we train RIN with only query embeddingvqi or reformu-
lation embeddings ri−1 to verify their individual capability. Figure 4
shows the MRR performance of RIN with and without homomor-
phic query and reformulation embeddings, where Q and R denote
the use of query embeddings and reformulation embeddings. It is
obvious that although the query embeddings are excluded, RIN (R)
only lowers MRR by 5.18% from the comprehensive RIN (Q+R).
However, when RIN (Q) only considers the query embeddings, the
MRR drops by 21.96%. Moreover, RIN (Q) performs even worse than
the best baseline method AGC. Even though reformulations are
much beneficial for query suggestion, they are so hard to learn
without directly being represented. The other observation is that
the gain from the reformulation embeddings, i.e., the improvement
of RIN (Q+R) over RIN (Q), is more substantial for shorter contexts.
For example, MRR improves by 23.73% for the short context dataset
while the improvement in the long context dataset is only 16.97%.
When the reformulations are clearly given, it becomes more con-
venient for models to understand user behaviors and predict the
intended queries.

Homomorphic vs. Non-homomorphic Embeddings. In addi-
tion to the effectiveness of homomorphic embeddings, we also
want to show its advantage against non-homomorphic embeddings.
Here we replace the query embeddings vq in RIN with the query
node embeddings from node2vec (see Section 4.2), which are non-
homomorphic. Note that the reformulation embeddings will be
calculated based on the updated query embeddings after the replace-
ment, although they are not theoretically homomorphic. Figure 5
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Figure 6: The MRR performance of RIN with and without
the reformulation inferencer. Note that RIN (-I) removes the
reformulation inferencer.

shows the MRR performance of RIN with homomorphic and non-
homomorphic embeddings. Note that RINNH represents RIN using
non-homomorhpic embeddings. When the query embeddings of
RIN become non-homomorphic, the MRR drops substantially. It is
because non-homomorphic query embeddings fail in representing
how users reformulate queries, especially for syntactic reformula-
tions. Although the previous work [37] demonstrates some exam-
ples of syntactic relationships, non-homomorphic embeddings still
cannot adequately preserve the syntactic reformulations.

Effectiveness of Reformulation Inferencer. Here we examine
how the reformulation inferencer works in RIN. Similar to the
previous analysis, we remove the component of reformulation in-
ferencer and observe the performance. Figure 6 depicts the MRR
performance of RIN with and without the reformulation inferencer,
where RIN (-I) is trained without the inferencer component. After
removing the component, the MRR performance decreases by 3.22%.
It shows that the reformulation inferencer is actually helpful to
predict the intended queries. Moreover, although the reformulation
inferencer is ignored, RIN (-I) still outperforms the best baseline
method ACG by 17.89% with reformulation embeddings as the in-
puts of query session encoder. Hence, the results also demonstrate
the effectiveness of the proposed embedding method.

Size of Embedding Dimensions. Here we try to study how the
size of reformulation embeddings (i.e., the nubmer of embedding
dimensions) affects the performance. Figure 7 shows the MRR per-
formance of RIN over different numbers of embedding dimensions.
When the dimension number increases from a small size, MRR
improves and peaks at the dimension number of 256. With a larger
size of dimensions, RIN becomes overfitted because of the sparsity
of search sessions. There is another interesting finding about long
sessions. MRRs of datasets with shorter contexts are more sensi-
tive to the embedding size than MRRs of the long context dataset.
When the context consists of multiple queries, the embeddings
of all queries and previous reformulations are fed into the model.

Size of Embedding Dimensions
64 128 256 512
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Figure 7: The MRR performance of RIN over different num-
bers of embedding dimensions.

Therefore, even though the embedding size is small, the combina-
tion of multiple queries in the RNN can still lead to a high degree
of freedom for the prediction capability.

6 CONCLUSIONS
In this paper, we propose a novel approach for context-aware query
suggestion by learning to represent query reformulations andmodel
how users reformulate queries over search sessions. Inspired by
homomorphic encryption, the homomorphic query embedding is
introduced to reflect reformulations with computations based on
semantic term embeddings. Our model, RIN, is then formulated
as a neural network architecture to read the previous reformula-
tions and infer the next reformulation in the embedding space,
thereby addressing either discriminative or generative query sug-
gestion. The extensive experiments demonstrate that our proposed
model significantly outperforms seven baseline methods for both
the discriminative and generative tasks of query suggestion. The
improvements are consistent across different datasets of various
context lengths. Moreover, the results of analysis also show the
effectiveness and robustness of the proposed model. The reasons
and insights can be concluded as follows: (1) reformulations are im-
portant to model search sessions, so homomorphic reformulations
embeddings that precisely capture both syntactic and semantic
reformulations can essentially benefit query suggestion; (2) the
effectiveness of the reformulation inferencer in RIN implies that
a model can be more capable of predicting the intended query if
the next reformulation can be also anticipated; (3) longer contexts
would not be necessarily required for understanding the search
intents if the model can capture how users reformulate queries.
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