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ABSTRACT
Nowadays, geosensor data, such as air quality and traffic
flow, have become more and more essential in people’s daily
life. However, installing geosensors or hiring volunteers at
every location and every time is so expensive. Some orga-
nizations may have only few facilities or limited budget to
sense these data. Moreover, people usually tend to know the
forecast instead of ongoing observations, but the number of
sensors (or volunteers) will be a hurdle to make precise pre-
diction. In this paper, we propose a novel concept to forecast
geosensor data with participatory sensing. Given a limited
number of sensors or volunteers, participatory sensing as-
sumes each of them can observe and collect data at differ-
ent locations and at different time. By aggregating these
sparse data observations in the past time, we propose a neu-
ral network based approach to forecast the future geosensor
data in any location of an urban area. The extensive ex-
periments have been conducted with large-scale datasets of
the air quality in three cities and the traffic of bike sharing
systems in two cities. Experimental results show that our
predictive model can precisely forecast the air quality and
the bike rentle traffic as geosensor data.

CCS Concepts
•Information systems→Geographic information sys-
tems; •Mathematics of computing→ Time series anal-
ysis; •Computing methodologies → Neural networks;

Keywords
Geo-sensor data forecasting; Participatory sensing; Urban
computing

1. INTRODUCTION
Participatory sensing [6] is a well-known concept to col-

lect various kinds of environmental informatics, such as air
quality, traffic, and human mobility. In the typical setting
of participatory sensing, the originator pays a set of partici-
pants, and asks them to carry some geosensors (e.g. mobile
devices or air-quality sensors) and move in the targeted geo-
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graphical area within a certain time period. To collect suffi-
cient data in terms of geography and time, the participants
are required to avoid either staying at a location too long or
moving to other places that had been sensored by other par-
ticipants. The government or some organizations can take
advantage of geosenor data to predict future environmental
informatics.

However, the environmental informatics may change rapidly,
and nearby locations could have significantly different geosen-
sor values. For example, air quality highly depends on the
weather condition and human behaviors. The air quality
may be quite different in the morning and noon. Moreover,
a location with unhealthy air quality may be only one mile
away from a healthy place [11]. Hence, forecasting envi-
ronmental informatics based on the geosensor data collected
from the paradigm of participatory sensing may lead to un-
satisfying results. In addition, while the targeted area to be
sensed is too large, it is unrealistic to assume that we can re-
cruit a large number of participants. Therefore, the geosen-
sor data collected from participatory sensing is supposed to
be very sparse in both spatial and temporal aspects.

In this paper, we attempt to solve the data sparsity prob-
lem of participatory sensing for forecasting environmental
informatics. Given a small set of participants carrying sen-
sors, based on the concept of participatory sensing, we as-
sume that they randomly appear at different locations at
different time point to collect geosensor data. Our goal is to
exploit such sparse and incomplete geosensor data to fore-
cast the future environmental informatics (i.e., the air qual-
ity and the rental traffic of bike sharing in this paper) for
all the locations in the targeted geo-spatial area. We pro-
pose a neural network-based approach with several useful
features, including statistical, temporal and spatial features.
However, participatory sensing may lead to several unsensed
features. To solve this problem, we present an approach in-
spired by dropout neural network [7], which is a method to
prevent overfitting. In the end, we also conduct extensive
experiments to demonstrate that our approach can precisely
forecast geosensor data with sparse and incomplete geosen-
sor data.

In the literature, there are two relevant studies [3,12]. The
work [12] assumes that the air quality values of all the moni-
toring stations are known, and uses such complete geosensor
data to predict the future air quality. The other work [3]
aims at inferring the past air quality values for arbitrary lo-
cations using complete geosensor data. It is apparent that
our forcasting based on participatory sensing is more chal-
lenging due to spatio-temporal data sparsity. In addition,
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Figure 1: The scenarios of forecasting geosensor data with traditional approach and participatory sensing.

our setting is more realistic and general since not all kinds
of environmental informatics can have monitoring stations
to obtain observed data.

2. PROBLEM STATEMENT
In this section, we introduce the problem statement of

forecasting geosensor data with participatory sensing.
Motivation. Figure 1 illustrates the forecasting of geosen-

sor data based on traditional approach and participatory
sensing. To forecast geosensor data, most of previous work
tend to set up a sensor at every location so that the model
can have sufficient historical data monitored to predict the
future data. However, it is too expensive to afford sensors
at all locations. Furthermore, setting up additional sensors
for new locations will be an extra cost. Hence, we propose
to forecast geosensor data with participatory sensing.

Consider that we have hired k participants carrying sen-
sors (with a limited budget), at every time point, each of
them will randomly bound for a location (which is differ-
ent from destinations of other participants) and utilize the
sensor to record the geosensor data. Through participatory
sensing, we can have geosensor data of k locations at every
time point. The goal of this paper is to aggregate the data
from participatory sensing and contextual information (e.g.
meteorology data) to predict the future geosensor data.

Problem Definition. We formally define the problem of
forecasting geosensor data with participatory sensing. Let
C be the set of locations for forecasting. For each location
c ∈ C, L(c) = (lo(c), la(c)) shows its longitude and lati-
tude. The geosensor data of location c ∈ C at the time
t ∈ Z is denoted as r(c, t), where each time point represents
a one-hour duration. M(c, t) represents the meteorology in-
formation of the location c ∈ C at the time t ∈ Z, including
weather, temperature, pressure, humidity, wind speed and
direction. Given the number of participants (or the bud-
get) k (1 ≤ k ≤ |C|), S(t) denotes the set of k observed
locations. For each location c and each time t, our goal
is to predict the geosensor data r(c, t) with the observed
data {r(c′, t′) | c′ ∈ S(t′), t′ < t} and meteorology informa-
tion {M(c′, t′) | c′ ∈ S(t′), t′ < t}.

3. PROPOSED APPROACH
In this section, we propose a neural network based ap-

proach with various useful features. To handle some missing
features due to participatory sensing, the concept of dropout
neural network is borrowed to solve the problem. We also
conducted the theoretical analysis to show the reasonable-
ness of our approach.

3.1 Feature Extraction
To train the model, we extract several useful features from

the observed data and meteorology information.

3.1.1 Statistical Features
The statistical information, derived from the historical

data, is important to understand the knowledge of the tar-
geted informatics Hence, we extract some statistical features
from the observed data.

Overall Statistics. The geosensor data of a location may
be consistent, so the statistics of past observations should
be meaningful. Here we calculate the mean and median of
data observed at the target location c before time t as two
numerical features.

Hour-based Statistics. Although the data of a location
may be consistent in day-level, there still may be dissimilar
patterns for different hours. Hence, we compute the statis-
tical values of observed data at the target location c by 24
hours as 2 numerical features.

3.1.2 Temporal Features
To predict time-series data, temporal information is much

more important. Therefore, features about time and data
observed in past are extracted as the temporal features.

Current Time. The time t itself may be important since
it can represent the stage of a day or a year. Intuitively
the time stage can also be helpful to make the prediction
more precise. Therefore, the hour of t is treated as a 24-
dimensional categorical feature.

Past Observed Data. The geosensor data may be de-
pendent upon historical data. Many previous work [1,8,9,12]
also consider the past sensed data as time series data, such
as forecast air quality and ozone level. Here we take the
data observed at the target location c in past 48 hours
{r(c, t− i)|1 ≤ i ≤ 48, c ∈ S(t− i)} as 48 numerical features.
Note that there will be several missing features because of
participatory sensing. The solution to handle this problem
will be introduced in Sec. 3.2.

3.1.3 Spatial Features
The geosensor data are all correlated with a geographi-

cal location, so the spatial information may be essential to
forecast the future data.

Neighbor Observed Data. The geosensor data may
be similar at close locations. In other words, the data at
near locations may be a good indicator for geosensor data
forecasting. Furthermore, the data from near locations can
to some degree solve the problem of unsensed features.

To encode the information from other locations, we group
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Figure 2: The illustration of our solution inspired
by dropout neural network to handle the unsensed
features. Note that xu

1 and xu
2 are features possible to

be unsensed, and xn
1 is the feature always available.

z1j denotes the input into the first hidden layer, and
f is the activation function.

them into 24 neighbor groups Gc
i by the distance (3 levels)

and the bearing (8 levels) to the location c. For each group
Gc

i , the median of observed data at locations in the group
at the last time point {r(c′, t− 1) | c′ ∈ Gc

i , c
′ ∈ S(t− 1)} is

calculated as a numerical feature. Hence, the geosensor data
around the target location can be encoded in the model.
Another benefit of grouping locations is that there may be
multiple locations in each group. Compared to observing
each location separately, the probability of missing features
will be lower from p to p|G

c
i |, where p is the missing rate of

a single location 1− k/|C|.
Meteorology Information. The meteorology informa-

tion is also an important factor reflecting the geosensor data.
For example, temperature can significantly affects air qual-
ity. Wind directions affect the transportation of air pollution
materials. Here we apply the meteorology data M(c′, t− 1)
of the target location c and neighbor groups Gc

i at time
t − 1 as features. For numerical information like tempera-
ture and wind speed, we encode them as numerical features,
and calculate the median for each neighbor group. For dis-
crete information like weather and wind directions, we en-
code them as categorical features, and compute the mode
for each neighbor group. In this paper, we adopt weather,
temperature, pressure, humidity, wind speed and direction
as the meteorology information, including 4 × (1 + 24) nu-
merical features and 2× (1 + 24) categorical features.

Note that even though gathering locations into neighbor-
ing groups can reduce the missing features, there may be
still several spatial features unsensed by participatory sens-
ing. Moreover, the missing rate of meteorology data at the
target location c may not be reduced. Therefore, we also
apply the solution mentioned in Sec. 3.2 to solve this prob-
lem.

3.2 Training with Unsensed Features
In this paper, we utilize the artificial neural network to

train a model with features mentioned in Sec. 3.1. Note
that the number of hidden layers can be any number. We
simply assign one hidden layer for evaluating the idea.

As mentioned in Sec. 3.1, a problem of participatory sens-
ing is that some features will be unsensed and missing. How-
ever, the case in participatory sensing is different from other
scenarios of missing data. Because the participants carry
sensors choose the locations randomly, the distribution of
missing should also correspond with the same distribution.
In other words, from the other aspect, the phenomenon of

unsensed features can be treated as the results that we ran-
domly ignore or remove them. Dropout [7] is an approach
to randomly drop units from neural networks and thereby
dealing with overfitting. Inspired by dropout, we consider
that the input units of unsensed features are dropped during
training. Figure 2 further demonstrates the illustration of
our solution. We first divide features into two sets, including
a set Xu that might be unsensed and Xn that might not.
For each feature xu

i ∈ Xu, we set a flag gi to record whether
xu
i is sensed. Based on the number of participants and the

number of locations in the neighbor groups, the probability
of being sensed can be computed as pi for the feature xi.
Therefore, from the viewpoint of all data points, the input
into the first hidden layer can be treated as follows:

z1j =
∑

xu
i ∈Xu

(xu
i · gi · wu

i ) +
∑

xn
i ∈Xn

(xn
i · wn

i ) + b,

where gi ∼ Bernoulli(pi), and b is the bias term. Through
this approach, these unsensed features will no longer be a
defect. The model can utilize them to prevent overfitting.
Finally, we can learn an artificial neural network model with
unsensed features.

4. EXPERIMENTS
Datasets. We conduct experiments on five datasets to

forecast the air quality (AQ) [11, 12] and the rentle traffic
of bike sharing (BS) [5, 10] respectively. For the AQ task,
datasets covering three major Chinese cities, including Bei-
jing (BJ), Tianjin (TJ) and Guangzhou (GZ), are applied.
The AQ task aims to forecast the PM2.5, which is an im-
portant air quality index (AQI). Note that although some
previous work utilize data from stations near the target city
as additional information, we apply only the stations in the
city because participatory sensing is based on a limited bud-
get. For the BS task, the experiments are conducted on
datasets of two US cities, including Washington D.C. (DC)
and New York City (NYC). The BS task is to forecast the
rentle traffic in a bike sharing system, which is the number
of users who rentle bikes in each time duration. Datasets in
both tasks contain the meteorology information. For hours
with multiple meteorology records, we compute the values
of median and mode for aggregating numerical and cate-
gorical information. Table 1 further provides detailed data
statistics.

Table 1: Data statistics of five datasets in two tasks.

Dataset
Air Quality (AQ) Bike Sharing (BS)

BJ TJ GZ DC NYC
Time span 2014/05/01-2015/04/30 2014/04/01-2014/04/30
# Stations 36 27 42 351 325
# Records 278,085 191,167 283,735 5,359,995 1,886,144

# Meteorology
116,867 106,614 30,305 683 449

Records

Experimental Settings. For each dataset, every station
is treated as a location to sense so that the ground truth
can be guaranteed. We equally divide the time span of each
dataset as training and testing periods for evaluation. For
every time t, k locations are randomly sampled as the set
S(t). Basically, we set k as 50% of locations in each dataset.
For analysis, we also evaluate the performance of the BJ
dataset with different k.
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Table 2: The overall performance of five methods in
five datasets for air quality (AQ) and bike sharing
(BS) tasks. Note that k is set as 50% of locations.
All improvements of our method are significant dif-
ferences at 95% level in a paired t-test.

Dataset Metric ARMA SKNN SVR ANN Ours

AQ

BJ
RMSE 61.9305 48.0565 64.5315 41.5409 36.6724

MAE 29.7170 26.2598 41.6494 24.4895 22.6632

TJ
RMSE 49.3223 34.8156 54.7269 37.1958 31.6178

MAE 26.1218 20.8746 37.1335 23.5406 20.6767

GZ
RMSE 17.5112 16.1787 23.7665 13.8771 13.4062

MAE 9.4470 10.6069 16.5019 9.3448 9.2335

BS

DC
RMSE 2.8287 2.6056 2.0471 2.0138 1.8594

MAE 1.2328 1.4400 0.9726 0.9546 0.8955

NYC
RMSE 5.9696 4.9828 4.4075 4.1515 3.8225

MAE 3.4115 2.9644 2.5854 2.4919 2.1987

Competitive Baselines. Our approach is compared
with four baselines: (1) Auto-Regression-Moving-Average
(ARMA): ARMA [2] is a well-known model for time-series
data prediction. It predicts the geosensor data only by pre-
viously sensed data. For the data unsensed by participatory
sensing, we directly ignore them and concatenate the sensed
data as the input of ARMA. (2) Spatial k-Nearest Neighbors
(SKNN): SKNN forecasts the geosensor data by aggregating
the sensed data of k spatially closest locations at time t− 1.
(3) Support Vector Regression (SVR): SVR is a variation of
support vector machine (SVM) for regression. We utilize the
past observed data as features, and set unsensed features as
0. (4) Artificial Neural Network (ANN): We also feed only
the past observed data into ANN. Note that it is applied to
our approach mentioned in Sec. 3.2 as well.

Experimental results. Root-mean-square error (RMSE)
and mean absolute error (MAE) [4] are adopted as the eval-
uation metrics in our experiments. Table 2 shows the over-
all performance of five methods. For the AQ task, SVR and
ARMA perform the worst among the baseline methods. The
reason might be the disappearance and discontinuity of data.
Conversely, SKNN performs better because there are always
k locations sampled to be the neighbors. ANN performs the
best. It also indicates that our approach to handle unsensed
features is effective. For the BS task, SKNN performs worse
because the rentle traffic may not be relevant to neighbor
locations. Besides, ANN still achieves the best performance
among the baseline methods. Our approach outperforms all
baseline methods in all datasets. It shows that the features
in the model and the method to handle unsensed features are
so effective. Figure 3 shows that the performance in the BJ
dataset with different observed percentages (i.e., the num-
ber of participants or sensed locations). It is obvious that
all methods perform better when the percentage increases.
In addition, our approach performs best among all meth-
ods. We also evaluate our approach with different number
of the hidden layer as shown in Table 3. With more neu-
rons in the hidden layer, the model is able to achieve better
performance.

5. CONCLUSIONS
In this paper, we propose a novel idea of forecasting geosen-

sor data with participatory sensing. Through a small set
of participants carrying sensors, we attempt to exploit the
sparse and incomplete data to predict the future environ-
mental informatics. A neural network-based solution with
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Figure 3: The performance in the Beijing (BJ)
dataset of the air quality (AQ) task with different
observed percentage of locations (i.e., the number
of participants).

Table 3: The performance of our approach in the
Beijing (BJ) dataset of the air quality (AQ) task
with different sizes of the hidden layer.

Size 32 64 128 256 512 1024
RMSE 42.5288 39.5373 37.7825 36.6724 36.0191 35.7773
MAE 27.3475 25.1453 23.4175 22.6632 21.8336 20.9201

features in several aspects is proposed to solve the prob-
lem. We also provide a concept inspired by dropout neural
network to handle the problem of unsensed features. Ex-
periments conducted on five real-world datasets exhibit the
promising effectiveness of our approach. The ongoing future
work is to consider the sequential properties of time series
data into the model.
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