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ABSTRACT
In this paper, we propose a new idea called ranking con-
sistency in web search. Relevance ranking is one of the
biggest problems in creating an effective web search system.
Given some queries with similar search intents, conventional
approaches typically only optimize ranking models by each
query separately. Hence, there are inconsistent rankings in
modern search engines. It is expected that the search re-
sults of different queries with similar search intents should
preserve ranking consistency. The aim of this paper is to
learn consistent rankings in search results for improving the
relevance ranking in web search. We then propose a re-
ranking model aiming to simultaneously improve relevance
ranking and ranking consistency by leveraging knowledge
bases and search logs. To the best of our knowledge, our
work offers the first solution to improving relevance rank-
ings with ranking consistency. Extensive experiments have
been conducted using the Freebase knowledge base and the
large-scale query-log of a commercial search engine. The
experimental results show that our approach significantly
improves relevance ranking and ranking consistency. Two
user surveys on Amazon Mechanical Turk also show that
users are sensitive and prefer the consistent ranking results
generated by our model.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
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1. INTRODUCTION
Relevance ranking is a critical task aiming to order search

results by their relevance to a user’s information needs. Pre-
vious works make great efforts to improve relevance rankings
from different aspects such as the modeling of learning to
rank [5,8,26], incorporating personalization [2,4,28] and the
accurate evaluation of search results [12, 18, 29]. However,
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the ranking consistency1 of search results for queries with
similar search intents has not been carefully investigated.
Suppose web pages about a certain topic on a website are
treated as a topical cluster. Ranking consistency refers to
the relevance of web pages in the same clusters that would be
generally consistent in the search results for similar search
intents.

Figure 1 shows some ordered search results for three queries
about basketball players (“Kobe Bryant,” “Tim Duncan,”
and “Kevin Durant”) from a commercial search engine. In
general, the ranking results of the first two queries (“Bryant”
and “Duncan”) are quite consistent by arranging Wikipedia

at the top and ranking sports-related websites (e.g., ESPN.com
and NBA.com) higher than others like movie-related ones
(e.g., IMDb). According to our observation, most NBA play-
ers follow such consistency. Potentially, if one website fo-
cuses mainly on certain topics, the quality of their web
pages is more likely to be close to each other. ESPN.com col-
lects much personal information about sports-related players
while IMDb focuses on movie promotion. For those queries
with similar search intents, the relevance of these web pages
about a certain topic (i.e., athletes) is likely to be consis-
tent. In other words, ESPN.com is more relevant than IMDb.
Unfortunately, the ranking of the third query (“Kevin Du-
rant”) is inconsistent in Figure 1. “Kevin Durant” is famous
for basketball, rather than movies. Giving IMDb a higher
ranking than ESPN.com does not make sense. The incon-
sistency represents a flaw in determining relevance ranking:
each query is optimized separately so that the potential con-
sistency among queries is totally ignored.

To learn the ranking consistency in web search, there are
two challenges: (1) The first one is how to consistently rank
topical clusters (i.e., web pages about a certain topic in each
website) based on their relevance to those queries with sim-
ilar search intents. For example, in Figure 1, we would like
to discover that, for queries about basketball players, web
pages in ESPN.com should be ranked higher than ones in
IMDb. Then the web pages in topical clusters can be con-
sistently ranked in the ranking results according to shared
relevance. (2) The second challenge is how to generally rank
all web pages for each query because some web pages (e.g.,
personal websites) may not share the topical cluster with
web pages of other queries. Even though they cannot be
ranked by the shared relevance with other web pages, they

1Although traditional approaches to learning to rank [8] also
mention “consistency,” their consistency is how the ranking
results are consistent with the training orders. Different
from their consistency, the ranking consistency in this paper
is how the ranking results are consistent with the results of
queries with similar search intents.
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Kobe Bryant Stats - ESPN.com - Go.com
espn.go.com/nba/player/_/id/110/kobe-bryant

Tim Duncan NBA Stats | Basketball-Reference.com
www.basketball-reference.com/players/d/davisgl01.html

Tim Duncan Stats, Video, Bio, Profile | NBA.com
www.nba.com/playerfile/tim_duncan/

Kobe Bryant Stats, Video, Bio, Profile | NBA.com
www.nba.com/playerfile/kobe_bryant/

Kobe Bryant NBA Stats | Basketball-Reference.com
www.basketball-reference.com/players/b/bryanko01.html

Tim Duncan - ESPN.com - Go.com
espn.go.com/nba/player/_/id/215/tim-duncan

Query “Tim Duncan”Query “Kobe Bryant”

Kobe Bryant - Biography.com
www.biography.com/people/kobe-bryant-10683945

Tim Duncan - Biography.com
www.biography.com/people/tim-duncan-40996

Kobe Bryant - IMDb
www.imdb.com/name/nm1101483/

Tim Duncan - IMDb
www.imdb.com/name/nm1989163/

Query “Kevin Durant”

Kevin Durant
kevindurant.com

Kevin Durant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kevin_Durant

Kevin Durant Stats, Video, Bio, Profile | NBA.com
www.nba.com/playerfile/kevin_durant/

Kevin Durant - IMDb
www.imdb.com/name/nm2562621/

Kevin Durant - ESPN.com - Go.com
espn.go.com/nba/player/_/id/3202/kevin-durant

Tim Duncan NBA Stats | Basketball-Reference.com
www.basketball-reference.com/players/d/davisgl01.html

Kevin Durant - Biography.com
www.biography.com/people/tim-duncan-40996

Tim Duncan -- 21
slamduncan.com

Tim Duncan - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Tim_Duncan

Kobe Bryant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe_Bryant

Official Website of Kobe Bryant
kobebryant.com

more consistent

less consistent

Figure 1: Search results of three queries about NBA basketball player (“Kobe Bryant,” “Tim Duncan” and
“Kevin Durant”) from a commercial search engine captured in April 2015.

are still relevant to specific queries. In Figure 1, three people
all have personal websites with the highest relevance. Al-
though these websites do not belong to any shared topical
cluster2, they should still be well ranked in proper positions.
Even though sports-related websites are ranked higher than
others, the order of different sports-related websites might
be different for different queries. In Figure 1, the order of
NBA.com and Basketball-Reference.com are reverse in the
rankings of the first two queries. A possible reason is that
the quality of contents in the two websites are different for
the two queries. The second challenge also includes this is-
sue.

In this paper, we propose a two-stage re-ranking model
to conquer the above two challenges and to improve the
relevance rankings of existing ranking models. In the first
stage, we start with query type extraction for understand-
ing the search intents of queries and URL pattern extraction
for exploring topical clusters in each website. By exploiting
click-through data in search logs as implicit feedback, nu-
merous pairwise preferences of URL patterns are extracted
for each query type, and then optimized as the complete
relevance distribution by pairwise ranking aggregation. The
rationality of this stage is also proven by an intuitive lemma.
In the second stage, an ensemble-based re-ranking model is
proposed to generally rank web pages by the results from the
previous stage and the original ranker of an existing search
engine. By applying click-through data as training data and
incorporating eight useful features, the model finds an ap-
propriate way to re-rank each web page from original results.

Extensive experiments have been conducted on the large-
scale real-world search log from a commercial search engine.
As this is the first study on the ranking consistency in web
search, we propose a new metric to evaluate the consistency.
The experimental results show that our model significantly
improves not only the ranking consistency but also the rele-
vance rankings from the original ranker across various sub-
sets of testing data with different distribution and query
types. Moreover, two user surveys on Amazon Mechanical
Turk further show the effectiveness of the ranking consis-
tency generated by our approach.

2In ESPN.com, the web pages share the same topic for vari-
ous queries (e.g., basketball players). But the web pages in
kobebryant.com are all about the same query (i.e., “Kobe
Bryant”).

The rest of this paper is organized as follows. After cover-
ing related work in Section 2, we give a brief overview of the
two-stage re-ranking model in Section 3. The details of our
model are presented in Sections 4 and 5. Section 6 reports
the experimental results of our model and two user surveys
on Amazon Mechanical Turk. Finally, Section 7 gives our
discussions and conclusions.

2. RELATED WORK
In this section, we review substantial previous work re-

lated to this paper in a number of topics.
Ranking Consistency. Although ranking consistency

has never been discussed in relation to web search, the term
ranking consistency is used in other other fields. In image
matching and object retrieval, previous works have evalu-
ated ranking consistency by measuring the similarity be-
tween image contents [10]. However, such ranking consis-
tency is only about the image search results of the same
query. Moreover, this is adopted to estimate similarities
between two ranking results of different methods for the
same ranked items by Nguyen and Szymanski [25]. Nev-
ertheless, they calculate similarities between the same ob-
jects and ranked items, but not between the search results
of different queries representing similar topics. Our ranking
consistency is calculated at a higher level and is able to have
more general applications.

URL Patterns of Webpages. A URL pattern sum-
marizes websites with similar URL strings and properties.
This feature is an important characteristic for representing
web pages in the deep web. Previous works [16, 20, 31] rep-
resent URL patterns as regular expression patterns so that
URLs can be matched conveniently. Jiang et al. [16] and
Li et al. [20] learn URL patterns from training URL collec-
tions for crawling web forums. Yin et al. [31] extract URL
patterns from click-through data for information extraction.
In our work, we collect URL collections from click-through
data and learn URL regular expressions patterns as in [16].
By leveraging click-through data, we derive the user prefer-
ences for URL patterns. Therefore, web search performance
and ranking consistency can improve if we rank websites
consistent with preferences.

Search Intents behind Queries. Understanding users’
search intents is an important task for search engines. Some
previous work represent the intents with click-through data
[21]. Hu et al. [15] use Wikipedia concepts to represent
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user search intents. Guo et al. [14] propose a new task
called named entity recognition in query (NERQ). They find
that more than 70% of queries contain entities [14]. Based
on this analysis, in our work, we assume that the search
intents of queries can be clustered into many types in a
knowledge base, i.e. Freebase, according to entities con-
tained in queries. Moreover, understanding search intents
behind queries can also improve relevance ranking. Gao et
al. [13] extract features from click graphs as additional fea-
tures. Bennett et al. [3] adopt predefined classes and try to
estimate class distribution as search intents. However, they
do not consider the ranking consistency of search results for
multiple queries. Gao et al. [13] only treat click-through
information as search intents of queries. Bennett et al. [3]
optimize ranking models with query and document class dis-
tribution for each query independently.

Click-through Data in Web Search For a search en-
gine, click-through data is an informative relevance signal
from users about relevance ranking quality [18]. Clicks in
search engine logs have been used as implicit measures such
as satisfied clicks (SAT-Clicks) for evaluation [12]. Learn-
ing from click-through data also helps improve the rele-
vance ranking of search engines. Joachims [17] optimizes the
search quality with implicit feedback extracted from click-
through data. Radlinski and Joachims [26] generate user
preferences from search logs with connected query chains.
However, they consider only preferences between web pages
in the search results of a single query, not between the URL
patterns for different queries. If user preferences between
URL patterns are also considered, the relevance of rare web
pages can be better estimated by leveraging information
from popular ones with similar topics.

Pairwise Ranking Aggregation. Our approach de-
riving consistent rankings of URL patterns is relevant to
pairwise ranking aggregation. In web search, Carterette et
al. [9] and Farah et al. [11] aggregate search results of a
single query from multiple search engines. In other fields,
Bennett et al. [1] improve image search quality by aggre-
gating crowdsourcing pairwise annotations. Liu et al. [22]
aggregate generated pairwise competitions to estimate user
expertise in community question answering services. How-
ever, they apply ranking aggregation for a single query or
only one problem. In this paper, we derive consistent rank-
ings of URL patterns, and then apply to multiple queries.

To summarize the relationship to previous approaches, our
approach (1) considers the search results of multiple queries
at the same time for ranking consistency; (2) utilizes click-
through data to learn URL patterns and represent websites
in the deep web; (3) discovers queries with similar intents
by leveraging type information in knowledge bases; and (4)
exploits click-through data to find out users’ preferences be-
tween URL patterns for each query type. To the best of our
knowledge, this is the first study on ranking consistency in
web search.

3. TWO-STAGE RE-RANKING MODEL
In this section, we first give a brief overview of the pro-

posed approach, and then describe the details in the fol-
lowing sections. Based on the concept of the ranking con-
sistency mentioned in Section 1, to simultaneously improve
the ranking consistency and relevance rankings, we propose
a re-ranking model consisting of two stages: (1) consistent
ranking model and (2) ensemble-based re-ranking.

The first stage, i.e., consistent ranking model, is to con-
sistently rank web pages in topical clusters by the relevance
of clusters to queries with same types, which are defined as
the groups of similar search intents. Hence, to develop the
ranking consistency, there are two challenges before rank-
ing web pages: (1) how to discover same-type queries (in
other words, how to identify the query types); and (2) how
to discover the topical clusters (i.e., web pages with similar
topics) in each website.

To recognize the search intents behind queries, a possible
solution is named entity recognition in queries (NERQ) [14].
It has been shown that the types of mentioned entities within
a query can be used to represent query intents, and more
than 70% of queries cover entities [14]. Moreover, many
existing knowledge bases (e.g., Freebase [6] and Probase [30])
summarize the types of entities. For example, in Figure 1,
the first query will lead to the entity“Kobe Bryant”with the
types people/person, basketball_player and film/actor.
Hence, the knowledge base can be leveraged to identify the
types of the entities as the query types.

As some websites have specific contents (e.g., ESPN.com

contains web pages about different sports), we need to dis-
cover the topical clusters of web pages in each website, where
the web pages in each cluster share the same topic. The
URL patterns can be utilized to represent the topical clus-
ters because web pages with the same topic usually share
the same URL pattern. For instance, in Figure 1, web pages
of ESPN.com for three queries can be summarized as the
URL pattern espn.go.com/nba/player/_/id/*/*/. More-
over, the utilization of URL patterns is helpful in determin-
ing the ranking consistency. Particularly, the ranking consis-
tency of search results can be decided by the consistency of
matched URL patterns. Note that personal websites such as
kobebryant.com and slamduncan.com may not be matched
by any URL pattern because their URLs are usually unique
and dissimilar to other URLs.

To estimate the relevance of URL patterns (i.e., topical
clusters) to query types, we apply the click-through data
in search logs because clicks can represent, to some extent,
users’ satisfaction. By exploring implicit feedback from user
clicks [17], numerous pairwise preferences of URL patterns
are collected for each query type, and then aggregated into
weighted preferences to avoid the bias of too popular queries
and contradictions. With the preferences of URL patterns,
the cost function of Rank-Net [8] is applied to combine
such preferences and optimize the relevance of patterns as
probability-like scores by stochastic gradient descent (SGD).
In the example of Figure 1, if most users click web pages in
ESPN.com but not the ones in IMDb, the URL pattern of
ESPN.com will have a higher score than the pattern of IMDb.

The second stage, i.e., ensemble-based re-ranking, is to re-
rank the ranking results of an original ranker based on the
results from the consistent ranking model (Stage 1). The
re-ranking model shapes a parameter to decide the weights
of the original ranker and the consistent ranking model,
and then makes an ensemble of two approaches. However,
such parameters should be different for each query and each
web page under various situations. For example, in Figure
1, personal websites like kobebryant.com are not matched
by any URL pattern, so the weight of the original ranker
would be larger to make them be ranked in higher posi-
tions. Conversely, web pages in ESPN.com are matched by a
URL pattern, such that the weight would be smaller to gain
relevance from the ranking consistency over the queries of
the same type. To model various situations, eight features
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within three categories are proposed, and the parameter can
be optimized as a logistic function whose inputs are the fea-
tures. Finally, the re-ranking model can generally re-rank
not only web pages in topical clusters but other web pages,
and then well optimize the relevance rankings.

4. CONSISTENT RANKING MODEL
In this section, we discuss the details of the first stage of

the proposed approach, which aims to rank web pages in
topical clusters according their relevance to query types.

4.1 Model Formalities
Recall that in Section 3 we discuss ranking consistency ac-

cording to queries of the same types and web pages matched
by URL patterns. To apply URL patterns to relevance rank-
ings, we first make an assumption as follows:

Assumption 1 For the URL patterns that are more rele-
vant to query types, web pages matched by such URL pat-
terns may be also more relevant to the queries.

With the above assumption, for those queries with only sin-
gle type, a simple approach is to rank the web pages that
are matched with more relevant patterns to higher positions
and ignore those web pages without any matched pattern. It
ensures consistent rankings because more relevant patterns
must be ranked higher than less relevant patterns.

However, a query may have multiple types due to its am-
biguity. Moreover, URL patterns may have different levels
of relevance for each type. Based on the above approach, we
start our model from the following assumption:

Assumption 2 When a query belongs to multiple types, the
relevance distribution is an aggregation over types.

That is, under the assumption, the relevance distribution of
a query can be computed by the distribution of its corre-
sponding types. To model the problem more easily, we use
a probability distribution to represent the relevance score.
This assumption is natural for a type-based consistent rank-
ing model. Considering all types of a query, the model is able
to cover potentially esoteric search intents. Moreover, the
problems can be decomposed into type-related tasks, which
are simpler and more reliable.

Query Type Extraction. To extract the types of a
query, we need to link the query to the corresponding entity
in the knowledge base, then the types of the linked entity will
be the query types. Although there has been some previous
work about named entity recognition in query [14], as a pio-
neer study of the ranking consistency, we simply exploit the
click-through data and make connections between queries
and Wikipedia pages of entities. Note that the Wikipedia
pages of entities can be found in most of knowledge bases
such as Freebase [6]. If an entity’s Wikipedia page has been
clicked many times after users have submitted a query, the
query will likely contain such an entity. Here an entity is
treated as the intended entity of a query if the click-through
rate of its Wikipedia page is more than 10%. After map-
ping queries to entities, we transfer types of entities in Free-
base [6] to queries as their types.

URL Pattern Extraction. Previous works preset many
methods for extracting URL patterns from click-through
data [31] or URL collections [16]. In our work, we adopt
the method mentioned in [16] because some URL patterns
are so complex that we have to use regular expressions to
represent them. All URLs clicked in the training logs are

1. Kobe Bryant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe Bryant
p1 = en.wikipedia.org/wiki/*

2. (Clicked) KB24 - Official Website of Kobe Bryant
kobebryant.com, p2 = ∅

3. (Clicked) Kobe Bryant Stats, Video, Bio, Profile
www.nba.com/playerfile/kobe bryant/
p3 = www.nba.com/playerfile/*/

4. Kobe Bryant Stats, News, Videos, Highlights ...
espn.go.com/nba/player/ /id/110/kobe-bryant
p4 = espn.go.com/nba/player/_/id/*/*/

5. Kobe Bryant Biography
www.biography.com/people/kobe-bryant-10683945
p5 = www.biography.com/people/*

6. (Clicked) Kobe Bryant | Los Angeles Lakers
sports.yahoo.com/nba/players/3118
p6 = sports.yahoo.com/nba/players/*

Figure 2: Ranking presented for the query “Kobe
Bryant” about a famous basketball player. Five
URLs are matched by URL patterns, and the user
clicked on URLs 2, 3 and 6.

collected as a URL collection. We then generalize the URL
collection into many regular expressions as URL patterns.

4.2 Model Formulation
Here our model is formulated formally. In this model,

URLs are used to represent web pages. For a query q, we
would like to estimate the relevance distribution P (u | q),
where u is a web page. In order to rank consistently, we only
focus on URLs, which can be matched by URL patterns. So
we have:

P (u | q) =

{
P (p | q) , if u is matched by pattern p

0 , otherwise
,

where P (p | q) is the relevance distribution of pattern p
given the query q. We ignore other URLs without any
pattern-match and treat them as irrelevant in this stage.
Furthermore, they will be well re-ranked in the second stage
with several robust features.

Following Assumption 2, the model ranks a pattern p ac-
cording to the probabilities that p is relevant to q’s types
T (q) in the knowledge base. On the other hand, queries are
independent to the relevance distribution of URL patterns.
Hence, the relevance distribution P (p | q) can be re-written
by marginalization as follows:

P (p | q) =
∑

t∈T (q)

P (p | t, q) · P (t | q)

=
∑

t∈T (q)

P (p | t) · P (t | q)

Therefore, the task can be decomposed into two problems
with better reliability: (1) how to estimate the pattern-type
relevance P (p | t), and (2) how to estimate the type distri-
bution P (t | q).

4.3 Pattern-Type Relevance
To estimate the pattern-type relevance P (p | t) in the real-

world, we adopt a data-driven approach with click-through
data from search engine logs. We extract pairwise prefer-
ences from original search results and user preference feed-
back from their behaviors in authentic web search scenarios.

Implicit Feedback from Clicks. As defined in [17],
click-through data in search engines can be thought of as
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Algorithm 1 Preference Extraction

Input: Given entity: e; Queries of e in the training logs:
Qe = {(q, C)}, where q is an entity query of e, and C
is the set of SAT-clicked URLs in click-through data;
Pattern set: S.

Output: Initial preference list for e: De.
1: De ← [ ]
2: for (q, C) ∈ Qe do
3: clickP ← ∅
4: for (u, p) ∈ C × S do
5: if u is matched by p then
6: clickP ← clickP ∪ {p}
7: end if
8: end for
9: for (pi, pj) ∈ clickP × (S − clickP ) do

10: Add (pi, pj) into De

11: end for
12: end for
13: return De

triplets (q, r, c) consisting of the query q, the ranking r pre-
sented to the user and the set c of clicked URLs. Figure 2
presents an example of click-through data: the user enters
a query, receives the ranking from the search engine, and
then clicks on several URLs with his or her opinions. Fig-
ure 2 also shows that some URLs can be matched by URL
patterns. Here we only focus on these matched URLs.

Using click-through data, many previous works extract
user preference feedback by assuming that a user is more
likely to click on a URL which is more relevant to the query
for her [17]. Here we make a similar assumption: a user
is more likely to click a URL matched by a pattern if the
pattern is more relevant to types of queries. Different from
previous works which only considering the unclicked URLs
ranked higher than clicked ones, we assume users observe
the top k URLs and extract preferences from unclicked pat-
terns, this is because: (1) we would also like to leverage
information from the original rankers, not only users’ pref-
erence feedback; and (2) if we do not generate preferences
between patterns in lower ranks, there will be a bias to such
patterns. Consider the example in Figure 2, the user enters
a query about a basketball player and clicks the patterns p3
and p6. We can extract pairwise preferences as follows:

(p3, p1) , (p3, p4) , (p3, p5) , (p6, p1) , (p6, p4) , (p6, p5) .

Note that we do not consider p2 because the URL is not
matched by any URL pattern. For each preference (pi, pj),
it shows that the pattern pi is more relevant to the type
basketball_player than pj in this click-through data. In
addition to patterns in the search results, we also assume
clicked patterns are more satisfactory than patterns which
do not appear in top k URLs in search results. This is be-
cause these patterns might have lower relevance to entities’
types such that they cannot be ranked higher. In our work,
we focus on top k URLs, which are contents of the first
page in search results. Moreover, the queries might have no
matched URLs. As in previous works [2,4], to ensure the re-
liability of clicks, we consider only URLs with satisfied clicks
(SAT-Clicks) as relevant and treat the other results as irrel-
evant. To define a SAT-Click, we adopt the definition used
in previous work [29] and consider clicks with at least 30
seconds dwell time as SAT-Clicks.

Based on the above strategies, Algorithm 1 extracts the
initial preference list De. Therefore, we can collect the click-

Algorithm 2 Preference Aggregation

Input: Given entity: e; Initial preference list of e: De.
Output: Weighted preference list for the entity e: Re.
1: cnt← new RB-Tree (or any key-value data structure)
2: for (pi, pj) ∈ De do
3: if (pi, pj) /∈ cnt then
4: cnt [(pi, pj)]← 0
5: cnt [(pj , pi)]← 0
6: end if
7: cnt [(pi, pj)]← cnt [(pi, pj)] + 1
8: end for
9: Re ← [ ]

10: for (pi, pj) ∈ S × S do
11: if (pi, pj) ∈ cnt and cnt [(pi, pj)] > 0 then
12: wij ← cnt [(pi, pj)] / (cnt [(pi, pj)] + cnt [(pj , pi)])
13: Add (pi, pj , wij) into Re

14: end if
15: end for
16: return Re

through data of queries with each type and extract prefer-
ences. However, there is a drawback. The results might be
biased by queries of popular entities because we extract pref-
erences from click-through data respectively. To avoid pop-
ularity bias, we aggregate preferences by entities of queries.
It is more natural for estimating pattern-type relevance. If
a pattern is actually more relevant to a type than the other,
we expect that most entities with such a type might make
corresponding preferences. Hence, Algorithm 2 aggregates
the initial preferences De from Algorithm 1 as a weighted
preference list Re for each entity e. Note that we apply
the red-black tree (RB-Tree) as the data structure to aggre-
gate occurrences of preferences. More precisely, the physical
meaning of weights wij in the weighted preference list is to
estimate the probability of observing the preference for the
two patterns. Finally, we have many weighted preferences
for each type with better rationalities by aggregating origi-
nal preferences.

Relevance Optimization. A pairwise preference can be
thought of as a partial constraint of two patterns because it
represents a pairwise comparison of them. With these pref-
erences, we optimize the pattern-type relevance such that
constraints can be satisfied.

First, we assume the distribution of the pattern-type rel-
evance for the pattern pi can be represented by a logistic
function as follows:

P (pi | t) =
1

1 + exp (−θi,t)
,

where θi,t is a parameter for pi and the type t. Therefore, we
can optimize θi,t to fit constraints from preferences. Specifi-
cally, we adopt a gradient descent method with the RankNet
cost function [8] to optimize pairwise preference. For each
type t, given the set of entities with such type E (t), the
RankNet cost function can be computed as follows:∑
e∈E(t)

∑
(p1,p2,w)∈Re

w · log (1 + exp (P (p2 | t)− P (p1 | t))) ,

where Re is the list of weighted preferences for the entity e,
and P (pi | t) is the relevance using current parameters θi,t.
We can then compute gradients for each parameter θi,t and
minimize the cost function.

Hence, we obtain the pattern-type relevance P (pi | t) of
pattern pi for each type t from optimized parameters θi,t.
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4.4 Type Distribution
The type distribution of a query shows how much users

treat it as a query of such a type. For example, although
Kobe Bryant types “basketball player” and “actor” at the
same time, people are much more concerned about the iden-
tity of basketball player. Accordingly, the URL pattern
www.nba.com/playerfile/*/ should be more relevant to Kobe
Bryant than the pattern www.imdb.com/name/*/.

To estimate type distribution, we use click-through data
again. During a search for the query, we assume that users
are more likely to click URLs matched by patterns of types
with which users are more concerned. Following the above
assumption, we can estimate type distribution for a query q
by a simple Bayesian m-estimate smoothing [24] as follows:

P (t | q) =

∑
p∈S P (t | p) · Click (p, q) +m · P (t)

m+
∑

t∈T (q)

∑
p∈S P (t | p) · Click (p, q)

,

where S is the set containing all patterns. Here Click (p, q)
calculates the times users are clicking URLs matched by pat-
tern p during searches for the query q. The prior distribution
P (t) can be computed by normalizing the number of entities
for each type. The type distribution of patterns P (t | p) can
be calculated with the Bayes’ theorem as follows:

P (t | p) =
P (p | t) · P (t)

P (p)
,

where P (p | t) is pattern-type relevance estimated in Section
4.3. The pattern distribution P (p) can be computed by
normalizing the number of SAT-Clicks for each URL pattern
in the pattern set S.

4.5 Theoretical Analysis
To verify the rationality of the consistent ranking model,

we conduct a theoretical analysis. Recall that the model
follows Assumption 1 and ranks pattern-matched URLs by
pattern relevance. Here we consider only the URLs matched
by patterns (i.e., non-matched URLs like personal sites are
not analyzed here because they will be re-ranked in the sec-
ond stage by appropriate features as shown in Section 5).
Before the analysis, note that the effectiveness of a ranking
pair (r1, r2) can be computed as the average of the effective-
ness of two rankings (i.e., F (r1, r2) = (F (r1) + F (r2))/2).
It is consistent with most traditional evaluation measures in
information retrieval such as NDCG and MAP.

Consider the ideal case of Assumption 1 (i.e., the relevance
of matched URL patterns perfectly leading to the relevance
of web pages), we have the following lemma:

Lemma 1 If the relevance of the web pages is exactly con-
sistent with the relevance of matched URL patterns, for any
pair of inconsistent rankings (r1, r2) of web pages matched by
the identical set of URL patterns for two same-type queries,
there must be a consistent pair (r′1, r

′
2) such that the consis-

tent one is at least as effective as the inconsistent one.

Proof. Let the effectiveness of a ranking r be F (r), e.g.,
reciprocal rank or average precision. We prove the theorem
with a proof by contradiction. First, we start by assuming
there is no ranking pair (r′1, r

′
2) such that:

F
(
r′1
)

+ F
(
r′2
)
≥ F (r1) + F (r2) ,

where r′1 and r′2 are consistent.
However, we can construct the counterexample with a

structured approach as follows. If F (r1) ≥ F (r2), let r′1 =
r1, and re-rank r2 as r′2 such that the order of matched URL

patterns is identical to r1. Note that (r′1, r
′
2) must be consis-

tent because both of them rank web pages identically with
r1. So we have:

F
(
r′1
)

+ F
(
r′2
)

= F (r1) + F (r1) ≥ F (r1) + F (r2) ,

which contradicts the initial assumption, then proving the
theorem. If F (r1) < F (r2), we can still find such a pair
with similar methods. Hence, we are guaranteed to find a
consistent ranking pair which is at least as effective as the
inconsistent pair.

Hence, the consistent ranking model is rational because,
for pattern-matched web pages, the above lemma shows that
to improve consistency with pattern relevance may benefit
relevance rankings under Assumption 1.

5. ENSEMBLE-BASED RE-RANKING
In Section 4, we propose a method to rank pattern-matched

URLs consistently. However, in real situations, there are
many URLs without any matched patterns such as personal
sites and official websites of entities. These URLs might
be as relevant as or more relevant than pattern-matched
URLs. Here we propose an ensemble-based re-ranking model
to leverage information from both the original ranker and
the proposed consistent ranking model.

5.1 Model Formulation
We start by presenting an ensemble-based model that as-

sumes uniform contributions from the consistent ranking
model and the original ranker. For a query q, we compute
the relevance of a URL ranked in the position i by the orig-
inal ranker as follows:

P (u | q, i) = λ · P (u | q) + (1− λ) · P (u | i) ,

where P (u | q) and P (u | i) are relevance given by the con-
sistent ranking model and the original ranker, λ is a pa-
rameter that controls the impact of the former model. In
our work, we simply let P (u | i) be a linear decay function
(k − i+ 1)/k, where k is the number of URLs in each page
of search results.

5.2 Multiple Parameters
Using a single parameter is not always reasonable. In dif-

ferent cases, the most suitable parameter might be different.
For example, when the URL is a personal site without any
matched pattern, λ should be lower because it may be so
relevant, and the consistent ranking model gives zero rele-
vance. As in [27], we replace the parameter λ with a logistic
function, which allows some features as the input, whereas
the output is bounded to values between 0 and 1.

More formally, the input of a logistic function is a set of
features X, whereas the output is the probability-like value
predicted by fitting X to a logistic curve. Accordingly, the
parameter λ is replaced as follows:

λ (X) =
1

1 + exp (−f (X))
, f (X) = β0 +

|X|∑
i=1

βi · xi,

where xi is the i-th feature in X, βi is the coefficient param-
eter of xi, and β0 is the bias parameter. Note that |X| = 0
is a special case of single parameter.

5.3 Parameter Optimization
In the proposed re-ranking model, we would like to learn β

parameters for receiving better retrieval performance. As in
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[23,27], we use a gradient descent method with the RankNet
cost function [8] again to perform an effective parameter
optimization. With the assumption mentioned in Section
4.3, we assume that clicked URLs are more relevant than
unclicked ones. Therefore, we can extract many pairwise
preferences of URLs for optimization. Given a set of queries
Q, the cost function can be computed as follows:

∑
qe∈Q

∑
(u1,u2)∈R(q)

log (1 + exp (P (u2 | q, iu2 )− P (u1 | q, iu1 ))) ,

where R (q) is a set of preferences for URLs from q’s click-
though data, iu is the ranked position of u in the original
search result.

5.4 Re-ranking Features
In our experiments, we adopt various features in different

levels, including entity features, query features and URL
features. These features are helpful in recognizing different
situations and adjusting distribution into a better status.
Note that these features are utilized as the feature set X in
our model (See Sec. 5.2).

5.4.1 Entity Features
The entities of queries are treated as the search intents of

queries. It is intuitive that entities with different properties
might use different parameters. Therefore, we extract entity
features from the information of entities.

Number of types. Entities might have different num-
bers of types in the knowledge base system. Because the
consistent ranking model treats relevance distribution as ag-
gregation over all types, different numbers of types might
have different performances in the model.

Type Entropy. We then consider not only the number
of types. Some types such as “person” and “location” are too
general such that too many entities belong to such types. In
other words, patterns of these types might not match URLs
which are relevant to users. If most of an entity’s types are
general, the impact of the consistent ranking model should
be lower. To verify that, we calculate the type entropy for
an entity e as follows:∑

t∈T (e)

−P (e | t) · logP (e | t) .

Here we treat all entities have equal importance and com-
pute entity distribution P (e | t) by a uniform distribution.

Entity Frequency. Different entities might have differ-
ent levels of popularity. More popular entities will lead to
more queries about them shown in search engines. To im-
prove overall performance, search engines will optimize for
them more than other queries. For these queries, the im-
pact of original results should be higher than the consistent
model. On the other hand, less popular entities will gain less
optimization from search engines. We hope that re-ranking
can leverage information from entities of the same type and
improve their performance. Here the frequency of an entity
query is utilized as the entity frequency.

5.4.2 Query Features
A user types characters into a query and asks the search

engine with his/her information needs. Such query strings
might contain some information of user’s search intents.

Query Length. Consider that each term in a query has
its meaning in user’s search intents, we assume that longer

queries contain more information. Following this assump-
tion, the original search engine might have better perfor-
mance for longer queries.

Query Frequency. Similar to entity frequency, we as-
sume that queries also have different levels of popularity.
Generally, search engines optimize for head queries but tail
queries. Accordingly, the parameters should be different for
queries with different popularity.

5.4.3 URL Features
With many properties of URLs, URL features are ex-

tracted from each ranked URL respectively. Different URLs
might also have different parameters while re-ranking. These
URLs might contain more information.

Pattern Matching. In the consistent ranking model,
URLs without any pattern-match will be ignored and re-
ceive zero relevance. In this case, original results should
have a higher impact. We use a binary variable to represent
whether a URL is matched by a pattern.

Original Position. Original position represents the rele-
vance score given by the original ranker of search engine. A
URL with a high position might be relevant enough and does
not need an ensemble with the consistent ranking model.

Consistent Relevance. Similar to the feature of origi-
nal position, relevance generated by the consistent ranking
model might also affect parameter selection.

N-gram Similarity. URLs like personal and official sites
might have higher relevance, although they might not be
matched by any pattern. To verify this point, we calcu-
late the n-gram similarity between the hosts of URLs and
queries. It is highly possible that a URL is the official site of
an entity if the host of URL is similar to the query. To cover
official sites under public publishing services, we also calcu-
late the n-gram similarity of whole URL strings to queries.

6. EXPERIMENTS
We conduct extensive experiments on large-scale datasets

to evaluate the performance of our re-ranking model and to
verify the effectiveness of the co-cluster hypothesis.

6.1 Datasets and Experimental Settings
Knowledge Base. We use Freebase [6] dumped in Jan-

uary 2014 as our knowledge base. Freebase classifies entities
into types under various domains such as people/person

and book/author. An entity might belong to multiple types
in Freebase. Each type under a domain is treated as a query
type in our work. We then remove very sparse types such
that each type has at least five entities. Finally, there are
444 query types in our type set.

Datasets. Our experimental data is comprised of click-
through data submitted to a commercial search engine in
November 2013. After extracting entity queries, in total
there are 56,466,534 queries for 847,682 distinct entities. By
generalizing URL collections, there are 30,765 unique URL
patterns utilized in our experiments. We use the queries
submitted before 22 November, 2013 as the training data to
train models. The remaining data is used as the testing data
to evaluate performance. For the ground-truth, we adopt
click-through data in search engine logs. We treat URLs
with SAT-Clicks as the ground-truth. To evaluate perfor-
mance in different situations, we divide the testing data into
seven testing datasets with different conditions as shown in
Table 1. The overall testing dataset consists of all queries
for representing the general case. We also evaluate perfor-
mance for queries with different levels of popularity. For
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Table 1: The description of each testing dataset.

Dataset Description

All All queries in testing data.

Head Queries with top 10% entity frequency.

Tail Queries with bottom 10% entity frequency.

New Queries which do not appear in training data.

Peo. Queries with type people/person.

Loc. Queries with type location/location.

Org. Queries with type organization/organization.

Table 2: Performance of ranking consistency. All
improvements of our method against the default
ranking are significantly different at 99% level in a
paired t-test.

Type Default Our Approach

Overall types 0.5671 0.5943 (+4.78%)

people/person 0.6410 0.6517 (+1.67%)

location/location 0.6327 0.6455 (+2.02%)

organization/organization 0.7533 0.7588 (+0.73%)

celebrities/celebrity 0.6306 0.6697 (+6.21%)

music/album 0.4589 0.4842 (+5.51%)

book/book 0.5367 0.5544 (+3.31%)

entities without appearance in the training data, we would
like to verify if our model can still make improvements. Fi-
nally, we evaluate the performance of queries with different
types. Note that we choose those three types because they
are the types with the most entities.

6.2 Experimental Results

6.2.1 Evaluation of Ranking Consistency
Because our work is the first study on ranking consistency

among same-type queries in web search, there is no standard
metric to evaluate that. Here we propose a new metric based
on Kendall’s tau [19], which is a rank correlation coefficient,
to evaluate ranking consistency. For a type t and a set of
queries Q (t) with the type t, we define the ranking consis-
tency with ranking correlations of all query pairs as follows:

1(
|Q(t)|

2

) ∑
q1∈Q(t)

∑
q2∈Q(t)\q1

τ (r (q1, t) , r (q2, t)) ,

which r (q, t) denotes the ranking result of t’s URL patterns
with query q, and τ (r1, r2) is the standard Kendall’s tau
rank correlation coefficient [19]. To evaluate consistency for
all patterns, we give zero rank scores to pattern without
appearance in search results while calculating Kendall’s tau.

Table 2 shows ranking consistencies of the default ranking
and our method for overall types and some sampled types.
Generally, our method can significantly improve the rank-
ing consistencies over the original ranking results. Then we
attempt to analyze improvements for each type. Regarding
the first two types, it is obvious that their improvements
are less than the overall cases. This is because they are too
general such that their queries have many dissimilar search
intents. For example, both queries with the types bas-

Table 3: Performance of pattern-type relevance es-
timation. All improvements against the baseline are
significantly different at 95% level in a paired t-test.

Measure Frequency Our Approach

NDCG@1 0.9607 0.9821 (+2.23%)

NDCG@2 0.7655 0.8145 (+5.87%)

NDCG@3 0.6748 0.7363 (+8.61%)

NDCG@4 0.6267 0.6800 (+8.07%)

NDCG@5 0.5857 0.6450 (+9.69%)

ketball/player and film/actor are used to hold the type
people/person. They might originally have much different
ranking results. The type organization/organization has
the smallest improvement. A reason might be that it has
much higher consistency in the default ranking results. The
other reason is that the useful patterns of the type are too
few to make a significant improvement. For the last three
types, their improvements are more than the above ones.
We explain that these types are more specific to groups of
queries. It means that the queries have more similar URLs
for these types. Also, they have larger weights in type dis-
tribution to queries such that the consistent ranking model
ranks patterns of these types more consistently.

6.2.2 Evaluation of Pattern-Type Relevance
Because the key of the consistent ranking model is to

estimate the pattern-type relevance, we first evaluate per-
formance of such relevance. For each type, we collect the
five relevant URL patterns with highest estimated pattern-
type relevance to be evaluated. For the baseline, we adopt
a frequency-based model ranking each URL pattern by its
clicked counts in the search engine logs.

In order to evaluate performance, we hire two assessors
to manually judge collected URL patterns. For each col-
lected pattern for a type, two assessors annotate it carefully
and assign a three-level relevance score as follows: relevant
and important (Score 5), generally relevant (Score 1) and
irrelevant (Score 0). Note that all collected patterns are
annotated by these assessors. With annotated results, we
evaluate the quality of collected patterns with the metric
NDCG@k as follows:

NDCG@k =
DCG@k

IDCG@k
, DCG@k =

k∑
i=1

2reli − 1

log2 (i+ 1)
,

where reli is the relevance score of the i-th pattern, IDCG@k
is the ideal DCG@k. Note that we calculate IDCG@k with
k highest relevance scores (Score 5). In the annotation pro-
cess, the agreement on annotated results by two assessors is
80.76%, with 0.65 unweighted kappa coefficient [7]. The fi-
nal NDCG is calculated as the average of NDCG by results
annotated by two assessors.

Table 3 represents the performance of pattern-type rele-
vance estimation. Our approach significantly outperforms
the frequency-based baseline. It shows that our method can
rank relevant pattern-matched URLs higher in the consis-
tent ranking model. The baseline’s lower performance is
caused by the biases from popular entities such that irrel-
evant patterns are ranked higher. On the other hand, our
model considers such a problem and aggregates preferences
by entities to achieve a better performance.
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Table 4: Performance of re-ranking models and de-
fault ranking. All improvements of our methods
against the default ranking are significantly differ-
ent at 99% level in a paired t-test.

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)

MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Head
MAP 0.7294 0.7491 (+2.70%) 0.7611 (+4.34%)

MRR 0.7309 0.7505 (+2.68%) 0.7627 (+4.35%)

Tail
MAP 0.7116 0.7228 (+1.57%) 0.7384 (+3.76%)

MRR 0.7138 0.7251 (+1.58%) 0.7408 (+3.78%)

New
MAP 0.7272 0.7453 (+2.49%) 0.7572 (+3.83%)

MRR 0.7287 0.7468 (+2.48%) 0.7589 (+3.83%)

Peo.
MAP 0.7468 0.7756 (+3.86%) 0.7834 (+4.89%)

MRR 0.7483 0.7772 (+3.86%) 0.7851 (+4.92%)

Loc.
MAP 0.7268 0.7465 (+2.72%) 0.7573 (+4.20%)

MRR 0.7283 0.7481 (+2.71%) 0.7588 (+4.19%)

Org.
MAP 0.8422 0.8615 (+2.28%) 0.8674 (+2.99%)

MRR 0.8432 0.8624 (+2.28%) 0.8684 (+3.00%)

6.2.3 Evaluation of Re-ranking Models
Table 4 shows the experimental results of our re-ranking

models and the default ranking on different testing datasets.
As our evaluation metrics, we adopt the mean reciprocal rank
(MRR) and mean average precision (MAP).

For the results of default ranking, the testing dataset of
head queries is better than the overall performance. The rea-
son is that search engines focus on optimizing such queries.
On the other hand, tail queries have lower performance. Re-
garding testing datasets of specific types, although location
queries have similar performance to overall cases, people and
organizations queries have higher performance. One reason
is that people and organization might have their own offi-
cial sites. To some extent, these official sites are the most
relevant to such queries, especially to organization queries.
Search engines might notice that and optimize search results.
With the above observations and analyses, the performance
of default ranking seems reasonable.

For all testing datasets, our methods have significant im-
provements over the default ranking with both single param-
eter and multiple parameters at 99% level in a paired t-test.
Generally, the model using multiple parameters achieves
better performance than using a single parameter. It shows
that our proposed features are also valuable in helping the
model optimize parameters. Similar to the default ranking,
our methods perform better on head entities than tail enti-
ties. This is because our model also optimizes parameters
by each query although we generate pattern relevance by
types. However, there are still great improvements in the
queries of tail entities. It demonstrates that our approach
can help improve the relevance ranking performance of the
low-frequency queries. For queries without appearance in
training data, our methods have similar improvements to
the overall cases. This is the advantage of our methods
which can cover new queries with the same types as train-
ing entities. Regarding testing datasets with specific types,
the location queries have similar performance to the over-
all cases. Recall that we conclude that better performance
of people queries in default rankings is caused by their own
official sites. It is interesting that their improvements are
still larger than the overall cases. We explain that there

are many sites with URL patterns for people entities such
as www.biography.com. For some specific groups of peo-
ple, there are also special sites with URL patterns such as
www.imdb.com for celebrities and espn.go.com for athletes.
Learning to rank such patterns well helps the models achieve
strong improvements. The other point is that the improve-
ments of organization queries are less than overall cases.
Our explanation is that there are few structured websites
for multiple organization, so there are also few useful URL
patterns to improve the performance.

Based on the experimental results and above analyses, we
verify the effectiveness of our approach and its assistance
in improving the relevance rankings with the original search
results.

6.3 User Surveys
In this section, we would like to understand whether users

favor consistent ranking results produced by our consistent
ranking model (Stage 1). In order to conduct user sur-
veys, we sample five types as search intents and five pairs of
queries for each type. The sampled types consist of two hu-
man types (basketball_player and film/actor), two item
types (film.film and music/album) and one location type
(location/location). For each pair of queries, we extract
their search results from a commercial search engine and
keep web pages matched by URL patterns appearing in both
search results. With these queries and results, we conduct
two user surveys via Amazon Mechanical Turk3. In the first
survey, we want to understand whether users favor consis-
tent results when they observe two search results at the same
time. For each query pair, we re-rank two original results by
the consistent ranking model, and then ask all participants
to decide whether the consistent results are more likely to
rank relevant web pages higher. To avoid the description bi-
ases, we ensure that workers do not know which results are
re-ranked ones and randomly arrange two kinds of results.
The workers decide which kind of rankings is more relevant
by their own observation and personal opinion. In the sec-
ond survey, we show results of only one query in a question.
We want to know whether users still favor consistent results
when they do not have results of the other query for refer-
ence. Finally, there are 25 questions in the first survey and
50 questions in the second one. For each survey, we ask ten
Mechanical Turk workers to answer all questions.

Figure 3 shows the results of two user surveys. When
users observe two queries and their search results at the
same time, it is obvious that users tend to prefer consis-
tent results. It shows that users realize the differences and
consider the consistent results are more relevant. In the
second survey, the percentage selecting the original results
increases when these queries appear separately. The reason
is that users cannot directly observe the consistency between
two ranking results. However, there are still more questions
with more users selecting the results of consistent rankings.
It indicates that users really care about the consistency of
ranking results whether the results of queries appear at the
same time or not. In other words, if we improve the consis-
tency of current search engines, the overall relevance ranking
performance may also improve.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new idea called ranking con-

sistency in web search. The actual observations show that

3Amazon Mechanical Turk: https://www.mturk.com/
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Figure 3: The results of two user surveys.

the search results of different queries with similar search in-
tents should be consistent. However, conventional search
engines optimize each query separately so that some queries
may have inconsistent and less relevant search results. By
leveraging knowledge base and click-through data, we pro-
pose a two-stage re-ranking model. The results of the exten-
sive experiments demonstrate that our approach can indeed
improve the ranking consistency of search results. In the
meanwhile, the results show that our approach significantly
improves the performance of both ranking consistency and
relevance ranking. Such improvement is consistent across
different datasets with different types of queries under dif-
ferent conditions. The reasons are as follows: (1) Our model
considers queries with similar queries at the same time by
leveraging a knowledge base to identify the types of queries;
(2) Our approach precisely discovers the user preferences of
URL patterns for each query type from query logs. Addi-
tionally, by leveraging the knowledge base and URL patterns
, our model can effectively learn the ranking consistency for
rare queries from the massive search logs of top queries with
similar search intents. Moreover, two user surveys on Ama-
zon Mechanical Turk also show that users are sensitive and
prefer consistent search results. Overall, all experimental
results demonstrate that the ranking consistency is an im-
portant factor in web search.

In future work, the performance may be much improved if
it can be applied to modern state-of-the-art ranking models.
Future work will consider applying the idea of the ranking
consistency into state-of-the-art models for learning to rank.
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