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Abstract—Microbes play a critical role in human health
and disease, especially in cities with high population densities.
Understanding the microbial ecosystem in an urban environment
is essential for monitoring the transmission of infectious diseases
and identifying potentially urgent threats. To achieve this goal,
researchers have started to collect and analyze metagenomic sam-
ples from subway stations in major cities. However, it is too costly
and time-consuming to achieve city-wide sampling with fine-
grained geo-spatial resolution. In this paper, we present MetaM-
LAnn, a neural network based approach to infer microbial
communities at unmeasured locations, based upon information
from various data sources in an urban environment, including
subway line information, sampling material, and microbial com-
positions. MetaMLAnn exploits these heterogeneous features to
capture the latent dependencies between microbial compositions
and the urban environment, thereby precisely inferring microbial
communities at unsampled locations. Moreover, we propose a
regularization framework to incorporate the species relatedness
as prior knowledge. We evaluate our approach using the public
metagenomics dataset collected from multiple subway stations
in New York and Boston. The experimental results show that
MetaMLAnn consistently outperforms five conventional classi-
fiers across several evaluation metrics. The code, features and
labels are available at https://github.com/zgy921028/MetaMLAnn

Keywords—Urban metagenomics; Multi-label classification;
Neural network

I. INTRODUCTION

Metagenomics is the study of the genomic content obtained
from a human body site or an environment to understand the
extent and role of microbial diversity. The microorganisms
presented in our environment play an important role in health
and disease. While human microbiome studies have allowed us
to analyze the microbial diversity within the human body [1],
environmental metagenomics has also become increasingly
important due to its impact on public health, especially in
densely populated urban areas [2, 3, 4, 5, 6, 7, 8]. Therefore,
understanding and inferring the fine-grained metagenomics
composition throughout a city is vital in helping long-term dis-
ease surveillance and health management. Recent studies have
made numerous efforts to establish city-scale metagenomic
profiles [9, 10]. For example, Afshinnekoo et al. [9] collected
samples from various surfaces across the entire New York sub-
way system and created a city-wide metagenomic profile. They
performed read alignment to generate taxonomic assignments
and computed the relative abundances at the species level.
Such a profile describes the metagenomic communities and
shows how humans interact with new microbes or dangerous
pathogens. In addition to the profiling in New York, Hsu

(a) Geographical topology affects the
microbial distribution

(b) Subway system network influences
the microbial distribution

Fig. 1: In (a), there are three clusters of subway stations based on
the microbial community abundance in each location, by using the
Pearson correlation. The East River is a clear boundary that separates
the three districts: Manhattan (blue dots), Brooklyn (yellow marks),
and the Roosevelt Island (the red dot at top right). In (b), the line
passing the Broad channel conserves its own microbial community
cluster (red dots), whereas samples in stations on Rockaway Park
Island are more diverse (different colors).

et al. [10] provided a comprehensive metagenomic profile
of microbial communities across multiple surface types in
the Boston transportation system. While their works provided
initial datasets for further analysis of urban microbiome di-
versity, it is costly and time-consuming to collect, sequence,
and analyze the metagenomics data at every station. Based
on these previous urban metagenomic sequencing efforts, we
are interested in developing a model to automatically infer the
microbial communities for unsampled locations.

To infer the microbial communities for unsampled loca-
tions is challenging. Firstly, microbial communities could
vary tremendously in a complicated urban system due to
multiple factors, such as geographical topology and public
transit network. Recent studies have discussed the effects of
line connectedness on the similarity of microbial communities.
Leung et al. [2] have conducted a Mantel test of Hong
Kong subway line (MTR), indicating that closely connected
MTR lines shared more similar microbial communities than
pairs that are further apart, possibly by distance-dependent
dispersal and transferring commuters. To further evaluate
this assumption, we conduct the correlation analysis between
the microbial abundance distributions in New York subway
stations, as shown in Figure 1. Different microbes can be
separated by geographical boundaries, and the same microbe
can be spread along the same subway line. Secondly, the
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surface material type, from which the samples are collected,
may also affect the formation and transmission of microbial
communities [10]. Lastly, within each community, the re-
latedness among individual microorganisms also need to be
considered. As the microbial community is affected by mixed
signals from various factors, a simple model predicting along
the same subway line for the station is not sufficient.

To address these challenges, we formulate the problem of
inferring the microbial communities of unsampled locations
as a multi-label classification (MLC) task. Given a set of
heterogeneous features extracted from the urban environment,
we aim to predict the presence or absence of a list of microbes
at a nearby location. For MLC, each location is considered
as an instance where each label represents a microbe. MLC
is suitable for solving our microbes inference problem since
different class labels have to be predicted simultaneously [11],
and their dependencies need to be exploited. These properties
reflect the nature of microbial communities.

In this paper, we present MetaMLAnn (Metagenomic Multi-
Label Artifical neural network) to infer the microbial com-
munity for urban metagenomics. MetaMLAnn is based on the
widely-used feed-forward neural network model, but instead
of predicting each label individually, it incorporates an extra
shared structure to capture the dependencies among different
labels (microbes). To train MetaMLAnn, we integrate features
constructed from different data sources. Manifold regulariza-
tion is used to incorporate domain knowledge, which makes
our model robust to the sparse samples with limited labeled
data. Finally, to further improve our model, we present an
ensemble model, MetaMLAnn+. To our best knowledge, our
work is the first attempt to infer the microbial community for
urban metagenomics with the neural network.

The contribution of this paper lies in the following aspects:

• This is the first in-depth study of inferring metagenomic
communities for unsampled locations. We formalize the
inference task as a multi-label classification problem and
propose a neural network learning technique (MetaM-
LAnn) to solve it.

• We leverage manifold regularization to guide the training
of MetaMLAnn by using domain knowledge of microbial
evolutionary relationships.

• We extract useful features from various data sources.
Transit features are constructed by using network em-
bedding techniques and types of surface materials are
encoded as categorical features.

• Experiments are conducted on the public available
metagenomic samples collected from the subway stations
in New York and Boston. The results demonstrate that
MetaMLAnn outperforms five baseline methods. We fur-
ther boost our performance by using the ensemble model.

II. RELATED WORK

In the field of urban computing, statistical model, such as the
regression tree [12] has been employed in atmospheric science
to do a real-time prediction of air quality. More recently, there
has been a trend of applying the big data approach to solve
urban challenge [13]. For example, in U-Air [14], the authors
aim to infer the fine-grained air quality throughout a city. Their
model is a semi-supervised learning approach, based on the
air quality data reported by existing monitor stations and a
variety of data to infer the air quality for other locations. The
spatial classifier for their model is based on an artificial neural

network (ANN). Yet, this model predicts a single value (i.e.
the air quality index) for each location and is inadequate to
address the MLC task we formulated.

Several computational models, such as BioMiCo [15] and
NMF [16] have been developed to infer microbial community
structures. To model the composition of each sample given the
abundance profile, BioMiCo uses a supervised Bayesian model
while NMF leverages the matrix factorization. Nevertheless,
these works are not directly applicable to infer the microbial
community for unsampled locations in the urban environment.
This is due to the fact that they are not able to incorporate
spatial information.

The aforementioned models are either not suitable for
understanding the complicated environmental situations or not
powerful enough to model the complex relationships between
microbial compositions and the urban environment. This mo-
tivates our neural network based model: MetaMLAnn.

III. METHODS

In this section, we formalize the notations and the problem
definition. Then we describe our proposed framework and how
we can leverage other models to further improve our model.

A. Preliminaries and Problem Definition

Definition 1. Microbe Index: Microbe Index (I) is defined as

an ordered list of identified microbial organisms. Each element

in I is a taxonomic name at the species level.

Definition 2. Microbial Distribution Matrix: All samples at

different locations are represented as a matrix Y ∈ Rn×m,

where n is the number of sampling locations, and m is the

total number of microbes in the Microbe Index. Each row Yi

represents the microbial distribution vector of location i. Each

element Yij represents whether the jth microbe exists (i.e. its

relative abundance meets a threshold γ) in the ith location.

Now, we demonstrate how we model the problem of inter-
ring microbial distribution based on the definition of Multi-
Label Classification [17].

Definition 3. Inferring microbial distribution as Multi-
Label Classification: A sampled location can be represented

by a k-dimensional feature vector, where k is the number

of predefined features. Given a sampled location and its

features, we aim to infer a microbial distribution vector

Y = {y1, y2, ..., ym} = {0, 1}m so that yi indicates if the

relative abundance of the i-th microbe in I is greater than a

threshold γ.

Problem Statement. Given a set of locations S = S1 ∪S2 =
{s1, s2, ..., sn}, where S1 and S2 are the sets of sampled and

unsampled locations, respectively. Each location si ∈ S1 is

sampled and associated with a microbial distribution vector

Ysi while we aim to infer the microbial distribution vector

Ysj of each unsampled location sj ∈ S2 .

The overall framework is shown in Figure 2a. It consists
of the MetaMLAnn model with two major flows: the learning
flow (blue units), and the inference flow (red units).
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Fig. 2: The left figure (a) illustrates the proposed framework in this paper, and the right figure (b) shows the detailed architecture of the
proposed MetaMLAnn.

B. Model: MetaMLAnn

Recall that we aim to infer m labels from k dimensional
input features. We first introduce the neural network model
[18] with a single hidden layer which contains p hidden units.
Input layer x ∈ Rk×1 is connected to the hidden layer h ∈
Rp×1 with weights W (1) ∈ Rp×k and biases b(1) ∈ Rp×1. The
hidden nodes are then connected to output nodes o ∈ Rm×1

via weights W (2) ∈ Rm×p and biases b(2) ∈ Rm×1. The
feed-forward neural network fθ : x → o can be represented
as follows:

fθ(x) = fo(W
(2)fh(W

(1)x+ b(1)) + b(2)), (1)

where θ = {W (1),W (2), b(1), b(2)}. fo and fh are the ac-
tivation functions in the output layer and the hidden layer,
respectively.

Our goal is to find a parameter vector θ that minimizes
the cost function J(θ;x, y), which measures the discrepancy
between predictions and given targets y. Here we use the cross-
entropy [19] as the cost function as follows:

JCE(θ;x, y) = −
∑

i

(yi log oi) + (1− yi) log(1− oi), (2)

where oi and yi are the predicted scores and the ground truth
for label i respectively. We use the sigmoid activation function
in the output layer, i.e., o = σ(z) = fo(z) = 1/(1+exp(−z)).

This naı̈ve form of the feed-forward neural network model
is used as our baseline. In MetaMLAnn, we propose a hetero-
geneous neural network architecture. The detailed architecture
of MetaMLAnn is shown in Figure 2b. In the hidden layers,
we define two different types of sub hidden layers which we
call blocks (B). For the first type, each block corresponds to
an individual output label, denoted as the individual blocks
Bi, 1 ≤ i ≤ m, where m is the number of labels. The
second type is a shared block, Bshare, connecting to all output
labels. With the extra structure Bshare, MetaMLAnn is able to
capture the latent dependencies among different labels. Each

block has the same structure, where the number of neurons is
specified as a parameter p. Each block has a single layer of
p hidden neurons. In the output layer, instead of using a fully
connected structure, each output neuron is only connected to
the corresponding individual block and the share block. Then,
the output for label yi is the linear combination of two blocks:
Bi and Bshare. Before generating the final outputs, we have
one more regularization layer discussed in the next section.

Based on the above definition, the input layer remains the
same as the basic neural network model. In the hidden layers,
instead of p hidden units, we have m+1 blocks B. Within each
block is a hidden layer with p hidden neurons. For each i, the
input layer x ∈ Rk×1 is connected to each block Bi ∈ Rp×1

with weights W
(1)
i ∈ Rp×k and biases b

(1)
i ∈ Rp×1. Then, the

blocks Bi and Bshare are connected to output node oi ∈ R via

weights W
(2)
i ∈ R1×p and biases b(2) ∈ R. The cost function

is the same as Equation 2.
To efficiently optimize the above objective function, we

use stochastic gradient descent (SGD) [20]. For the individual
block, we randomly sample a location i and a unit from yi
to compute Bi. For Bshare, we randomly sample a location i
and a unit from all the classes among y1 and ym to capture the
global properties shared by all microbes. The updating rules
W and b can be derived by taking the derivatives of the above
objective function and applying SGD. We omit the details here
due to the space limit.

C. Manifold Regularization

Neural networks are known to work the best in big data
scenarios with many training examples. Since we only have
access to a limited number of examples with few instances of
each class label, incorporating prior knowledge can potentially
compensate for data sparsity. Since evolutionary relationships
are expected to be associated with patterns of community com-
position [21], we assume that some groups of the microbes,
which are closely related to each other in the taxonomy, tend to
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co-occur in the same community. Here, the taxonomy refers to
the identification, naming, and classification of organisms [22].
Since taxonomy is usually richly informed by the evolutionary
relationships among microbes (i.e., phylogenetic), we choose
to use the evolutionary similarity as the domain knowledge
feeding into our regularizer. We build our regularization frame-
works based on the graph Laplacian regularizer [23, 24, 25]
to incorporate the microbial similarity.

Definition 4. Graph Laplacian matrix L: Given a matrix

P ∈ Rm×m representing pairwise similarities, the Graph

Laplacian matrix is defined as L = D − P , where D is

a diagonal matrix with the jth diagonal element Dj,j =∑m
j′=1(Pj,j′).

Given the trace operator tr(·), the local geometrical structure
of a vector β of length I can be preserved by minimizing

Ω(β) =
1

2

∑

1≤i,i′≤I

Pi,i′ ||βi − βi′ ||22 = tr(βTLβ), (3)

From Equation 3, βi and βi′ are enforced to be similar,
resulting in the following regularized loss function, where oi
and yi are the predicted score and true label for the sample i:

JCEreg (θ;x, y) = −∑
i [(yi log oi) + (1− yi) log (1− oi)] + λtr

(
βTLβ

)

(4)
To obtain the Laplacian matrix L, we first constructed

the pairwise evolutionary similarity matrix (P ) of different
microbes, the details of which are discussed in Section IV-C.
After the neural network model generates the predicted mi-
crobial distribution vector Y ∗

i for the given location i, we can
regularize it by feeding Y ∗

i into Equation 3, where β refers
to the predicted vector Y ∗

i and βi, βj refers to the microbe i
and the microbe j at this location, respectively.

D. Feature Extraction

We define a k dimensional feature vector as F : Rk. Each
dimension represents an individual feature extracted from data
sources. The feature vectors of instances then form a feature
matrix and are used to train the model. In our task, we
specifically construct the following feature vectors: subway
station information, inter-station connections, and sampling
surface materials.

Subway station features (Fs): By obtaining the MTA (for
New York) and MBTA (for Boston) subway station data,
we associate each location with the nearest stations within
a predefined radius r = 0.01 miles. This radius value is an
empirical parameter and can be tuned. The feature vector is
then created based on the lines that pass through the current
station. This station information is then used as the node in
the subsequent network construction process.

As the number of DNA collected in a station has a positive
correlation with the number of riders [9], we also obtained
the public MTA data regarding the usage of turnstiles in the
subway system at each station. We computed the average
number of riders within the DNA collection date at each
station and then weigh the corresponding node vector.

Interconnection features (Fc): With each location associ-
ated with a subway station, we construct the subway system
network as follows: each node represents a subway station,
and an edge between two nodes represents the interconnection

between two stations. We use the minimum number of stops
from station i to station j to compute the weight on edge(i, j).
We assign 1 as the weight if there exist express trains directly
connecting two stations. After obtaining the station network,
the network embedding algorithm Node2Vec [26] is applied
to embed each node into a low dimensional vector based
on the generated graph. The embedding vector represents the
interconnection features of each node.

Surface materials features (Fm): As mentioned in [10],
there is a strong correlation between the surface materials and
the microbial communities. Since each data sample includes
information on the type of materials it was collected from,
we construct another set of vectors to capture such signal. For
the New York dataset, the vectors are of length 5, where each
element represents one type of material: ‘concrete’, ‘metal’,
‘plastic’,‘water’ or ‘wood’. For the Boston dataset, there are
4 types of materials: ‘glass’, ‘polyester’, ‘PVC’, and ‘steel’.

Finally, all features are concatenated into a feature vector
for each sample. The feature vectors for all the instances form
a feature matrix and be fed into the model.

E. Ensemble with Hybrid Prediction

When the amount of training data is insufficient, the perfor-
mance can be compromised. To alleviate this issue, we propose
to construct an ensemble of MetaMLAnn with any other model
that needs fewer training samples.

For each label i, let oi be the predicted score of MetaM-
LAnn. Given the score from the other model M as oMi ,
we conduct a linear hybrid prediction for the ensemble as:
oh = α · oi + (1− α) oMi , where 0 ≤ α ≤ 1 is a parameter to
decide the weights of two models. When α = 1 the prediction
is MetaMLAnn, and when α = 0 the prediction is the model
m. We denote the ensemble approach as MetaMLAnn+.

IV. DATA

A. Data Description

We focus on inferring the microbial communities in densely
populated urban areas. We evaluate our model using the New
York and Boston datasets obtained from the MetaSUB Inter-
City Challenges track of the 2017 CAMDA Contest1. They
both contain raw metagenomic reads and sample descriptions.

There are 1,572 samples in the New York dataset. These
samples are collected from open stations for all 24 subway
lines of MTA. DNA samples collected from each site are
sequenced using the Illumina platform, with a total of 10.4
billion paired-end reads, as reported by [9]. Aside from the
raw reads, each sample is associated with meta information,
including the latitude and longitude of the collection site, the
collecting environment, and surface materials.

Similarly, there are 141 samples in the Boston dataset,
consisting of 5 subway lines that extend from downtown into
the surrounding suburbs. 16S ribosomal RNA (rRNA) gene
amplification sequence data are generated from most samples,
and a subset of which are subjected to shotgun metagenomic
sequencing, as mentioned in [10]. Each sample is also supple-
mented with additional information, describing the collecting
station information, surface type, and the collection date.

1http://camda2017.bioinf.jku.at/doku.php/contest dataset
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B. Data Preprocessing
For each sample with metagenomic sequencing reads in

the New York and Boston datasets, we conduct the following
preprocessing steps:

1) To be consistent with the processing procedure in [9],
we use MetaPhlan2 [27] to perform microbial profiling.
Each profile contains the relative abundances as a per-
centage from the kingdom level to the species level.

2) As mentioned in [9], 48.3% of the reads do not match
to any known organism in the New York dataset.
When constructing the microbial distribution vector, we
remove those unknown microbes and recompute the
relative abundances of the remaining known microbes.

C. Supplemental Data Sources
The subway station data from the MTA and MBTA website

are used to construct the subway line features. They contain
geographic locations, station names, and lines labels. We also
obtain the turnstile data to quantify the busyness of all stations.

To capture the underlying microbial relationship, we con-
struct a pairwise similarity matrix. From the NCBI [28] and
the Silva [29] database, we retrieve the 16S rRNA sequence
for bacteria and archaea, 5S rRNA for eukaryotes, and the
whole DNA sequences for viruses. Within each kingdom, we
perform pairwise sequence alignments to obtain the similarity
between species from 0 to 1 based on the alignment score.
We assign 0 for cross-kingdom species pairs. To compute the
similarity matrix at the genus level, we take the mean of all
species’ similarity scores under that level and aggregate them
as the new score for each genus pairs.

V. EXPERIMENTS AND RESULTS

A. Baselines
As a multi-label classification problem, we adopt several

widely used algorithms as baselines, including Inverse Dis-
tance Weighting (IDW) interpolation [30], k Nearest Neighbor
(kNN) [31], Support Vector Machine (SVM) [32], Random
Forest (RF) [33], and Neural Network [34].

B. Experimental Settings
We first remove outlier samples whose locations are outside

the boundary of New York or Boston due to measuring errors.
After the data processing mentioned in Section IV-B, each
sample is associated with a vector of abundances. We assess
the abundance at all levels and observe that many species are
seriously under-represented (i.e. appearing at only one loca-
tion). To alleviate this disparity issue, we focus on the abun-
dance at the genus level. This removes the issues related to
missing species-level taxonomy, under-represented microbes
and close-related microbial species. Together with features
extracted discussed in Section III-D, we obtain 46 features
and 269 labels (232 Bacteria, 15 Eukaryotes, 8 Archaea and
14 Viruses) for the New York dataset and 43 features and 236
labels (209 Bacteria, 7 Eukaryotes, 5 Archaea and 15 Viruses)
for the Boston dataset. We demonstrate the generalization of
different models through k-fold cross-validation (k = 3).

Recall that MetaMLAnn+ is an ensemble of MetaMLAnn
and the other model (M) interpolated by α. α closer to 1
means more weight on MetaMLAnn and closer to 0 means
more weight on M. We choose IDW as M in the New
York dataset and Random Forest (RF) as M in the Boston

TABLE I: Evaluation of all the methods by cross-validation on New
York dataset at the genus level.

Evaluation Metric
Methods precision recall F1 score ranking loss
IDW 0.5669 0.6686 0.6129 0.1790
kNN 0.7203 0.5109 0.5977 0.1273
SVM 0.7510 0.4787 0.5845 0.0725
Random Forest (RF) 0.7288 0.5026 0.5941 0.1365
Neural Network 0.7419 0.5110 0.6050 0.0718
MetaMLAnn 0.7456 0.5325 0.6212 0.0682
MetaMLAnn+IDW 0.6578 0.6170 0.6363 0.0688

TABLE II: Evaluation of all the methods by cross-validation on
Boston dataset at the genus level.

Evaluation Metric
Methods precision recall F1 score ranking loss
IDW 0.7288 0.5026 0.5941 0.1365
kNN 0.7401 0.6447 0.6812 0.1924
SVM 0.7583 0.5366 0.6282 0.1473
Random Forest (RF) 0.7397 0.6746 0.6991 0.2187
Neural Network 0.7228 0.5594 0.6214 0.1297
MetaMLAnn 0.7674 0.6706 0.7095 0.1270
MetaMLAnn+RF 0.7744 0.6862 0.7229 0.1283

dataset. After parameter tuning, we use α = 0.7 for both
MetaMLAnn+IDW and MetaMLAnn+RF.

C. Performance of MetaMLAnn and MetaMLAnn+

To assess the performance of our classifier, we report preci-
sion, recall, F1 score and ranking loss [35] as our evaluation
metrics. Table I and II show the overall performance. As
discussed in the experimental settings, we focus on the genus
level inference.

In the New York dataset, our model performs the best in
terms of F1 score and ranking loss, though the precision and
recall rank the second among other baselines. MetaMLAnn
presents the best balance of both precision and recall. In
addition to MetaMLAnn, we also report the result of the
ensemble model MetaMLAnn+IDW. Table I shows that the
F1 score can be further boosted by more than 1%, which is
better than either MetaMLAnn or IDW.

As for the Boston dataset, in addition to the F1 score and
ranking loss, our model also outperforms all the baseline
models in precision. Even though Random Forest achieves
a slightly higher recall, it suffers from many false positives.
However, as shown in Table II, after we leverage the Random
Forest model as part of our ensemble model, MetaMLAnn+RF
achieves the best performance in all metrics.

In both datasets, MetaMLAnn is conservative, i.e. predicting
more 0s as labels, due to the sparsity of the datasets. IDW and
Random Forest tend to predict more microbes with a high re-
call value in the New York and Boston dataset, respectively. By
leveraging this property as orthogonal information, MetaM-
LAnn+ compensates the conservativeness of MetaMLAnn.

VI. CONCLUSION AND FUTURE WORK

City-scale metagenomics profiling of microbial diversity is
vital to a city for long-term disease surveillance and health
management. While recent work has made great efforts to
collect metagenomic samples in densely populated cities, it
is still challenging to obtain the metagenomic profiles at fine-
grained geo-spatial resolutions. In this paper, we identify the
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problem of inferring microbial community for urban metage-
nomics and model it as a multi-label classification problem.
We propose MetaMLAnn, a neural network based approach
to infer microbial communities for unsampled locations based
upon information from various data sources in the urban
environment. The model captures the dependencies between
microbes and the urban environment by a shared hidden layer.
The ensemble technique further improves the performance
of the model by leveraging signals from other models. The
extensive experiments demonstrate the effectiveness of our
approach. In the future, with the increasing amount of cities
being sampled, we plan to extend our model to solve the inter-
city metagenomic inference problem.
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