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ABSTRACT

The advent of RNA-Seq has made it possible to quantify transcript
expression on a large scale simultaneously. This technology gen-
erates small fragments of each transcript sequence, known as se-
quencing reads. As the irst step of data analysis towards expression
quantiication, most of the existing methods align these reads to a
reference genome or transcriptome to establish their origins. How-
ever, read alignment is computationally costly. Recently, a series of
methods have been proposed to perform a lightweight quantiica-
tion analysis in an alignment-free manner. These methods utilize
the notion of k-mers, which are short consecutive sequences repre-
senting the signatures of each transcript, to estimate the relative
abundance from RNA-Seq reads. Current k-mer based approaches
make use of a set of ixed size k-mers; however, the true signa-
tures of each transcript may not exist in a ixed size. In this paper,
we demonstrate the importance of k-mers selection in transcript
abundance estimation. We propose a novel method, Fleximer, to
eiciently discover and select an optimal set of k-mers with lexible
lengths. Using both simulated and real datasets, we show that, with
fewer k-mers, Fleximer is able to cover the similar amount of reads
as Sailish and Kallisto. The selected k-mers own more distinguish-
ing features, and thus substantially reduce the errors in transcript
abundance estimation.
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1 INTRODUCTION

Gene expression proiling serves the means to study transcriptome.
The knowledge acquired from expression studies aims to create a
global picture of cellular function. In the past two decades, microar-
ray and high-throughput sequencing are the popular technologies,
providing a rapid measurement to quantify a large number of genes
simultaneously. The sequencing-based technology that captures
the snapshot of existing RNAs is referred to as RNA-Seq.

The advent of RNA-Seq poses substantial computational chal-
lenges, speciically in handling the massive amount of read data
[27]. The traditional data analysis framework contains two com-
ponents: read alignment and expression quantiication. Millions
of short reads generated by the sequencer are irst aligned back
to a reference genome or transcriptome to re-establish their ori-
gins. Several aligners include, but are not limit to, Tophat2 [13],
MapSplice [26], and SpliceMap [2]. However, this alignment step
requires a signiicant amount of computational resources [8]. Even
with parallel computing, analyzing a reasonable size of RNA-seq
experiment can still take hours [19]. Recently, alignment-free or
pseudoalignment approaches have been developed to alleviate the
computational burden [4, 19, 23, 28]. Instead of aligning reads back
to their references, these approaches design k-mers to infer tran-
script abundances from read data. They have all demonstrated a
rapid analysis, improving the running time from hours to minutes.
The k-mer approach harbors the features and advantages of both
microarray and RNA-Seq. A set of k-mers behaves similarly to the
probes in a microarray chip, which is used to identify the corre-
sponding sequences in cDNA sample pool. Unlike the measurement
in a microarray, the amount of cDNA identiied by these k-mers
is unbounded in RNA-Seq. In addition, since the k-mer design is
performed in-silico, it is easier to re-construct a diferent set of
k-mers for new analyses than re-designing a microarray chip.

Sailish [19] is the irst implementation to use k-mers for tran-
script quantiication. It indexes all k-mers that appear at least once
in the transcriptome and counts their occurrences in RNA-Seq
data. Based on these counts, it estimates the relative transcript
abundance through the expectation-maximization (EM) algorithm.
Further ameliorating the throughput, RNA-Skim [28] divides the
transcriptome into clusters based on sequence similarity. For each
cluster, it selects a set of k-mers that do not appear in any other
clusters, denoting as sig-mers (signatures of a cluster). Since each
cluster contains a unique set of k-mers, the quantiication step
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can be performed independently for smaller groups of transcripts.
Zhang and Wang [28] have shown that RNA-Skim requires less
computational time to achieve the same accuracy. Kallisto [4] builds
targeted de-Bruijn graphs on all k-mers to facilitate the quantiica-
tion, and claims faster and more accurate performance than Sailish.
All of these methods use a ixed k , which is a predeined parame-
ter. However, selecting the appropriate k is not intuitive for a new
experiment, and the best k characterizing a transcript sequence
varies for diferent transcripts. For these reasons, we focus on the
discussion of how to select a set of k-mers that can best describe
transcript sequences with lexible lengths.

A k-mer cannot be too short because it can randomly match to a
read that comes from a diferent transcript than the k-mer origins.
Shorter k-mers have a higher chance to be repeated in the genome.
Moreover, this event also arises when a read contains sequencing
errors or individual variations. The accidental mismatch scenario
is similar to the łcross-hybridizationž phenomenon in microarray
[14]. On the other hand, since the quantiication step requires an
exact match between a k-mer and a segment of a read, a long k-mer
is less robust to reads containing sequencing errors or individual
variations. An optimal set of k-mers should be robust to sequencing
errors and individual variations, and should also be able to describe
the uniqueness of each transcript. Sailish originally set the default
value of k to be 20, but changed it to 31 according to its website 1.
The initial choice is based on the evaluations over a small range of k
(15-25) without further optimization. RNA-Skim studies the overall
accuracy of transcript abundances for diferent ks before setting
it to 60 as the default option. Neither of them has provided any
guidance in selecting the right k for a new experiment or species.

To overcome the limitation of a ixed k , our main contribution
focuses on developing an eicient approach to identify and select
an optimal set of k-mers with lexible lengths. Our method takes
a predeined genomic or transcriptomic partition as an input. The
partition can be based on sequence similarity, biological functions,
or any other user-deined scheme. In order to discover k-mers that
are unique to each cluster with all possible lengths, we rely on the
structure and properties of a suix tree. We use the Aho-Corasick
algorithm to eiciently match the reads to a set of representative
k-mers of variable sizes. Based on the read counts, we use the EM
algorithm to estimate the relative expression abundance for each
transcript. We evaluate the performance of our method, Fleximer,
using both synthetic datasets and real RNA-Seq data. Results show
that Fleximer is able to minimize the prediction errors, providing a
more accurate transcript abundance estimation compare to exist-
ing k-mer based methods. Fleximer is implemented in C++11 and
available at https://github.com/chelseaju/Fleximer.git.

2 METHODS

2.1 Fleximer Overview

The lightweight algorithms for RNA-Seq quantiication start with
identifying a set of k-mers in a transcriptome, followed by either
counting the occurrence of k-mers in RNA-Seq reads, or directly
counting the reads that contain these k-mers. Since we know the
transcript origins of these k-mers, transcript abundance can be
inferred from read counts or k-mers counts. We irst partition a

1 http://www.cs.cmu.edu/∼ckingsf/software/sailish/faq.html

transcriptome Θ into a set of non-overlapping clusters θ1, θ2, ..,
θn based on sequence similarity, and select a special type of k-
mers, named sig-mers, for each cluster. These sig-mers represent the
discriminative short sequences of a cluster of transcripts and do not
appear in any other clusters. Adopting the terminology introduced
by RNA-Skim, a set of sig-mers s in cluster θi is deined as

Ω(θi ) = {s | s ∈ (k-mers in θi ),∀θ j ∈ Θ \ θi , s < (k-mers in θ j )}

The size of k-mers can have a predominant efect toward the
accuracy of transcript abundance estimation. We conducted an ex-
periment to examine the efects of diferent ks . Experimental details
are described in Section 4.1. We compared the estimated abundance
to true abundance using 14 sets of sig-mers from RNA-Skim, and six
sets of k-mers from Kallisto, with diferent values of k . We observed
that the best prediction for each transcript falls in diferent ks. Addi-
tionally, the accuracy varied largely among diferent sets of sig-mers

for some genes. Motivated by these observations, our method aims
to eiciently select a set of sig-mers with lexible lengths, and to
accurately quantify transcript abundance using this set of sig-mers

in RNA-Seq data. We divide our objective into four components,
with the irst two focusing on sig-mer generation and the last two
addressing transcript quantiication. Figure 1 shows an overview
of our approach. We follow the partition scheme in RNA-Skim [28]
to generate a set of non-overlapping clusters of transcripts based
on sequence similarity. Given this set of clusters, the transcript
sequences are inspected using a suix tree data structure to identify
the sig-mers of each cluster. We select a subset of sig-mers that are
robust to read errors, and can best describe the signatures of each
transcript. We then use the Aho-Corasick algorithm to eiciently
determine the occurrence of sig-mers in each read. The presence of
these sig-mers provides the information of transcripts where each
read is potentially originated from. The counts of these potential
transcripts are then distributed by the EM algorithm for expres-
sion quantiication. In this section, we describe each component of
Fleximer in detail, including a brief review of the suix tree.

2.2 Background on Suix Tree

Let t ′ be a string over the alphabet Σ = {A,C,G,T }, and ł$ž be a
unique character, such that $ < Σ. This unique character is appended
to the end of the string t ′ to guarantee that every suix ends at a
leaf in the tree. Therefore, we use the following notations: t denotes
the entire string with a terminator (t ′ + $), and |t | denotes the size
of t . The string t can be degenerated into |t | suixes, and stored into
a compressed tree structure, known as the suix tree. This suix
tree contains exactly |t | leaves, which are labeled by the starting
position of the corresponding suix. Each internal node has at least
two children. The label of an internal node is omitted for memory
eiciency. Each edge is labeled with a non-empty substring of t ;
edges connecting from the same parent contains diferent starting
characters. The edge labels can be concatenated through a path in
the tree, forming a longer substring of t . Thus, any individual suix
of t can be recreated by traversing along a path from the root to a
leaf and concatenating the labels of the edges along the way.

Multiple sequences can be stored in the same tree, forming a
generalized suix tree (GST) [3]. A GST can be constructed by
appending diferent unique symbols at the end of each sequence
to ensure no suix is a substring of another. Alternatively, we can
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Figure 1: Fleximer Overview. Data input contains a predeined partition of a transcriptome, and RNA-Seq reads. The partition
is stored in a specialized fasta format, where each entry represents one cluster. The header starts with a cluster name, follow
by transcript names. The sequence ield contains all transcript sequences in a cluster, separated by a special character ł|ž. In
sig-mer identiication, we construct a suix tree based on forward and reverse complementary sequences of all transcripts.We
apply a post-order traversal on the suix tree to identify all sig-mers with diferent lengths. We ilter these sig-mers to keep
only the optimal ones and use them to estimate the transcript expression in RNA-Seq data. In the matching step, we use the
Aho-Corasick algorithm to determine the occurrence of sig-mers in each read. We then apply the EM algorithm to resolve the
count of reads that are shared by multiple transcripts. The blue boxes denote the preparation stage for sig-mer generation,
which only needs to be executed once. The green boxes denote the analysis stage, which applies to each RNA-Seq experiment.

concatenate these sequences into one long string, separated by a
single terminator, and build a regular suix tree for the resulting
string. Regardless of using a single or multiple terminators, each leaf
node stores suicient information to retrieve the starting positions
and sequence of origin for each suix.

The construction of a suix tree takes linear time and space
respect to the total sequence size [6, 16, 24]. The most memory ei-
cient implementation to handle genomic sequences is the Sadakane’s
compressed suix tree [21, 25], which relies on several abstract data
structures to reduce the memory footprint. It also preserves all the
operations for a normal suix tree. One of the abstract data struc-
tures is balanced parentheses [17], which represents the tree in
pre-order. This structure can be further modiied to retrieve node
information in post-order. For these reasons, we implement our
method using Sadakane’s compressed suix tree, which is available
from Succinct Data Structure Library (SDSL) 2.

2.3 Sig-mers Identiication in Fleximer

Given a set of n transcripts in a cluster θi , our irst task is to iden-
tify the sig-mers that can characterize the uniqueness of a cluster.
Suppose the average length of transcripts ism, the complexity of re-
trieving and examining all k-merswith length less thank is bounded
byO(nkm) (Supplementary A). In the human genome, there are over
20,000 protein coding genes, corresponding to more than 198,000
transcripts. The average length of a transcript is approximately
2,000 bp. Therefore, enumerating all possible substrings to check
for their uniqueness is computationally intractable. The suix tree is
a powerful data structure for string searching algorithm, and it has
been widely applied to a diverse range of biological sequence anal-
yses [10, 11, 15]. Leveraging the suix tree structure and properties,
we apply a post-order traversal to identify all unique substrings.

We build a suix tree based on all preixes and suixes of tran-
script sequences. We use both forward and reverse complementary
sequences to construct the tree. There are two practical aspects to
include the reverse complementary sequences. First, reads from the
sequencing technology can be generated from the complementary
strand. Second, suixes of a reverse complementary sequence serve

2https://github.com/simongog/sdsl-lite/

as the same mean as the preixes of its forward sequence. If a sub-
string is a sig-mer, then its reverse complementary sequence is also
a sig-mer. In a suix tree, if a substring from the root to any node
appears only once in our transcript sequences, this path contains
at least one sig-mer. We refer this node as a candidate. An internal
node typically represents a substring that appears more than once
in our transcript sequences. The path to any internal node contains
a sig-mer only if all of the starting positions of this substring are
located in the same cluster. These starting positions can be retrieved
recursively from its descendants. Speciically, we use a bottom-up
approach to examine each node through a post-order traversal.

The post-order traversal starts with the left subtree, followed by
the right subtree, and the parent. We store the substring informa-
tion of the nodes that have already been visited. This information
does not include the actual sequence, but is suicient to retrieve
the cluster and sequence IDs, and the starting positions of a sub-
string. At each internal node, we determine if it is a candidate by
examining all substrings from its children. If all substrings come
from the same cluster, then it is a candidate. Otherwise, the search
process terminates for this branch, marking this node and its an-
cestors disqualiied. Since the cluster information of a substring
propagates from the leaves, all the ancestors of a disqualiied node
can be pruned. We use this anti-monotonic constraint to avoid fur-
ther computation of its ancestors. Figure 2 uses a toy example to
illustrate this idea to discover all sig-mers.

A substring from the root to a candidate node represents the
longest sig-mer at this candidate. On the other hand, a substring
from the root to the irst character on the edge between the can-
didate node and its parent represents the shortest sig-mer for this
candidate. In order to obtain sig-mers with all possible sizes, we
need to append all preixes of the edge label between the candidate
and its parent to the path from the root to its parent. An example
is illustrated in Figure 2.

2.4 Sig-mers Selection in Fleximer

The compressed suix tree allows us to eiciently discover all sig-
mers with diferent sizes. However, not all of them are necessary for
the quantiication stage. We select a set of representative sig-mers

that possess three properties: 1) Be robust to sequencing errors and
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Figure 2: Sig-mers Identiication. We use both forward and reverse complementary sequences of each transcript to construct
a generalized suix tree. Each leaf contains cluster and sequence IDs of a suix. Each edge is labeled by a substring. The
cluster and sequence IDs of an internal node are retrieved from its descendants through a post-order traversal. Candidates are
highlighted in red. For example, substring AGCT$ and AGCTT$ appear uniquely in sequence 1 and 1’ (reverse complementary
of sequence 1) of cluster X, respectively. Thus, their nodes are candidates. Their parent is also a candidate since AGCT only
appears in cluster X but not in cluster Y. However, their grandparent is not a candidate as AG appears in both cluster X and
Y. The traversal process terminates here for this subtree. In order to generate all sig-mers with diferent sizes, we consider all
preixes of an edge label between a candidate and its parent. Therefore, AGC is also a sig-mer in addition to AGCT.
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Figure 3: a) A cluster contains three transcripts, T1, T2, and T3. The upper igure shows the composition of these transcripts.
Each box represents either a unique or shared sequence segment. For example, segment B is shared by all transcripts, where
segment A is unique to transcript T1. If they are isoforms of the same gene, segment B can be interpreted as a common exon.
Since a partition may include transcripts frommore than one gene, we use the term ‘segment’ instead of the exon. A compact
splicing graph can be constructed for all member transcripts in a cluster, as demonstrated in the lower igure. Each edge
represents a segment, and each vertex indicates a transition point. Two virtual edges are included as dotted arrows from R to
v1 and from v2 to L. In this graph, sequences of these three transcripts are depicted by three paths (blue, red, and gray) from
R to L. Sig-mers can be viewed as a substring of an edge, denoted by the pink lines. Sig-mers span through a vertex are more
powerful to determine the origin of a read, and thus are prioritized for selection. b) We use an automaton to facilitate the
matching step between reads and a set of representative sig-mers. Each node consists a failure link to guide the search. Given
a query łAACTGž, we follow the path AAC (dark blue) and ind the substring belongs to sequence 1 in cluster Y. Following the
failure link, we can quickly ind CTG (light blue), which also belongs to sequence 1 in cluster Y.

individual variations. 2) Characterize the uniqueness of each tran-
script. 3) Provide suicient coverage across all transcript sequences.
We will irst discuss the optimal range of k for robustness.

In an ideal scenario where there are no sequencing errors and
individual variations, sig-mers will match all reads that come from

the same cluster. In reality, reads contain sequencing errors and
individual variations. These reads are less likely to be recognized by
long sig-mers since the matching process requires an exact match.
On the other hand, these reads have a higher risk to be łmatched"
by short sig-mers that belong to other clusters. Therefore, a sig-mer
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cannot be too long or too short, with the optimal range depending
on the sequencing error rate and the fraction of individual varia-
tions. In addition, the upper bound of k is constrained by the read
length of an RNA-Seq experiment. Based on these considerations,
we set the lower bound to 25bp, and the upper bound to 80% of a
read length. Sig-mers are iltered based on their sizes.

After iltering, we use the concept of a splicing graph [9, 22] to
guide the selection. Splicing graph is irst introduced to predict and
represent the choices of alternative splicing for a gene model [18].
It is a directed cyclic graph, in which vertices represent the splicing
sites and edges are the exons or introns between two splicing sites.
Two virtual vertices are added to the graph, root (R) and leaf (L),
along with virtual edges, so that each transcript can be represented
by a path that goes from R to L. Vertices with their indegree and
outdegree equal to 1 are uninformative for delimiting alternative
splicing event, and are often collapsed to obtain a more compact rep-
resentation. Analogously, we can use a compact splicing graph to
represent all member transcripts in a cluster. A cluster may contain
transcripts frommore than one gene, depending on the partitioning
scheme. To incorporate this scenario, we broaden the deinition
of the edges and vertices. Edges represent diferent sequence seg-
ments that appear at least once in a cluster, and vertices represent
transition points where the incoming edge covers a diferent set of
transcripts from the outgoing edge. Figure 3a illustrates the com-
pact splicing graph of a cluster with three member transcripts. A
sig-mers can be viewed as a substring of an edge. As we observe
from the graph, a sig-mer possesses higher discriminative power
if it spans through a vertex. Considering three sig-mers sx , sy , and
sz in Figure 3a, sx resides completely on segment E and is shared
by two transcripts. Given a read that contains sx , the origin of this
read can be either one of these transcripts. On the other hand, sy
and sz span through vertex v3, and are unique to transcript T2 and
T3, respectively. Since sy and sz are superstrings of sx , reads con-
taining sy and sz also contain sx . However, sy and sz provide more
speciic information regarding the origin of these reads. Therefore,
the selection process prioritizes sig-mers that span through a vertex.

The original proposal of splicing graph is constructed through
ESTs (expressed sequence tags) or RNA-Seq reads assembly. Since
we already know the starting positions of all sig-mers, we do not
need to assemble these sig-mers. Instead, we order the sig-mers

based on their starting positions. As we traverse through all starting
positions in a sequential order, we pave all paths of a splicing
graph. To provide a suicient coverage for each transcript, we select
additional sig-mers along the path, spaced by a small gap (e.g., 5bp)
between two sig-mers. Since RNA-Seq reads may originate from
transcripts in either forward or reverse direction, complementary
sequences of the selected sig-mers are added to the inal list.

2.5 RNA-Seq Reads Matching

The quantiication stage starts with determining the potential tran-
script origins of each RNA-Seq read. We refer this set of potential
transcripts as the łtranscript proilež of a read. In the traditional
framework, the transcript proile of a read is determined by aligning
the read sequence to the reference transcriptome. In our setting,
each sig-mer is associated with a transcript proile indicating its
origins. We can construct the transcript proile for each read by

taking the intersection of all transcript proiles associated with the
sig-mers that appear in a read.

Discovering the occurrence of our representative sig-mers in
RNA-Seq reads is equivalent to the keyword searching problem in
computer science. A trivial approach is to index the representative
sig-mers (keywords) with a hash table. Since we allow variable sig-
mer sizes, the challenge lies on scanning through each read with
diferent window sizes. Even with an eicient hashing function,
such as rolling hash [12], the number of comparisons increases with
the variety of window sizes. Assume that the read length is ℓ, and
total length of sig-mers isM . The sizes of these sig-mers range from
k1 to kd . The time complexity for constructing the hash is O(M),
and for searching sig-mers in one read isO(ℓ×k1)+ . . .+O(ℓ×kd ).

The total time complexity would be O(M + ℓ ×
k1+kd

2 × d).
A linear search solution is the Aho-Corasick algorithm [1], which

constructs a inite state automaton for all sig-mers. This automaton
is a keyword tree with additional links between internal nodes.
These extra links allow fast transition between sig-mer matches
without the need for backtracking. The complexity of building the
automaton is O(M) and for searching is O(ℓ + z) where z refers to
the total number of occurrences of sig-mers in a read. Figure 3b
illustrates the search using the Aho-Corasick algorithm.

2.6 Transcript Abundance Estimation

Since the transcriptome is partitioned into a set of non-overlapping
cluster, each cluster can be quantiied independently. After the sig-
mer matching step, each read is associated with a transcript proile
indicating its potential origins. Based on these proiles, we can
group reads into their corresponding clusters. For each cluster θi ,
we use R(θi ) to represent the set of reads assigned to cluster θi , and
T(θi ) to represent the set of transcripts in θi . Each transcript τ ∈

T(θi ) is associated with a probability ατ indicating its proportion of
reads in cluster θi , and

∑

ατ = 1. If we know the exact origin of each
read, we can form an indicator matrix Z , where zr,τ = 1 indicating
that read r ∈ R(θi ) comes from transcript τ , and 0 otherwise. Since
each read only comes from one transcript, ατ can be estimated
by

∑

zr,τ / |R(θi )|, where |R(θi )| is the total number of reads in
θi . However, Z is not fully observed, and what we observed is the
transcript proiles for each read, forming another indicator matrix
Y . Similarly, yr,τ = 1 if τ is in the transcript proile of read r . Z is
the hidden variable, and can be recovered from the observation Y .
Therefore, we use the following likelihood function to estimate α :

L(α |Y ) =
∏

r ∈R(θi )

∑

τ ∈T(θi )

yr,τ
ατ

ℓτ
=

∏

e ∈E(θi )

(

∑

τ ∈T(θi )

ατ

ℓτ

) |e |

In this log-likelihood function, ℓτ is the efective length for tran-
script τ . We can improve the computation speed and memory by
grouping reads with the same transcript proile into equivalence
classes. The concept of the equivalence class is widely used in tran-
script abundance estimation [4, 19, 28]. We use E(θi ) to represent
the set of equivalence classes in θi , and equivalence class e ∈ E(θi )
contains |e | reads. We use the EM algorithm to compute the max-
imum likelihood estimates of α from our observed data Y . The
algorithm alternates between allocating the fraction of counts of
each equivalence class (E-step), and estimating the relative abun-
dance given this allocation (M-step). More speciically, the E-step
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reconstruct the hidden variable Z as ze,τ =
ye,τ ×

ατ

ℓτ
∑

e∈E(θi )

ye,τ ×
ατ

ℓτ

, and the

M-step updates the probability through Z, ατ =

∑

e∈E(θi )

ze,τ ×|e |

|R(θi ) |
.The

algorithm converges when the change of α is less than 10−7. At
convergence, read count of τ can be recovered through ατ and
|R(θi )|. We report transcript abundance in three commonly used
metrics: raw read count, RPKM (Reads Per Kilobase of transcript per
Million mapped reads), and TPM (Transcripts Per Kilobase Million).
Both RPKM and TPM are normalized measurements that account
for sequencing depth and transcript length.

3 DATA

3.1 Reference Transcriptome

We used the gene annotation from Ensembl release 81 of Human
Genome GRCh38 [5], which contained more than 22,000 protein-
coding genes. Among these, there are 19,817 protein-coding genes
located on the canonical chromosomes (chr1-21, X, Y, Mt). Our
experiments focus only on the transcripts encoded by these genes,
which correspond to 143,609 protein-coding transcripts.

Sequences of these transcripts were decomposed into k-mers and
indexed by Sailish and Kallisto. For RNA-Skim and Fleximer, these
transcripts were irst partitioned into non-overlapping clusters.
Transcripts with high sequence similarity were placed in the same
cluster. This partitioning scheme was adopted from RNA-Skim,
resulting in 16,149 clusters. Details of this process were described
in [28]. We used the specialized fasta format suggested in RNA-
Skim to store the sequences. The header of each entry contains a
cluster name and transcript names, separated by a special character
ł|ž. Similarly, the body of an entry contains transcript sequences in
a cluster, separated by ł|ž. Parameter settings of each software are
described in Supplementary B.

3.2 Simulated Dataset

We used polyester [7] to generate 15 sets of single-end RNA-Seq
reads for selected transcripts to evaluate the accuracy of diferent
methods. We randomly selected 2-10 % of the protein-coding tran-
scripts to be expressed in each sample. Each sample contained 3-97
millions of reads, with a read length of 75bp. Three diferent read
depths were used: 10X, 20X, and 30X. We selected an empirical
sequencing error model from polyester to simulate the protocol of
Illumina Sequencing Kit v4. Each read was tagged with the name of
the transcript where it originated. We computed the expected num-
ber of reads for each transcript by counting the transcript names
in the raw read ile. The expected RPKM and TPM were calculated
from the expected read count.

3.3 Real Dataset

We included a public dataset provided by the Illumina Human
BodyMap 2.0 Project (GSE30611). The samples contained individual
and a mixture of 16 human tissues RNA, and were sequenced using
Illumina HiSeq 2000 System. Among all these samples, we used six
of the single-end data with 75bp in our evaluation: female brain,
breast, and colon; male adrenal, lung, and liver. The Expression At-
las [20] provides gene expression information of highly-curated and

quality-checked RNA-seq experiments, including all 16 human tis-
sues of the Human BodyMap Project. We used the gene expression
values reported in http://www.ebi.ac.uk/gxa/experiments/E-MTAB-
513/ as our ground standard.

4 EXPERIMENTS AND RESULTS

4.1 Motivating Example

Current lightweight quantiication methods use a ixed k ; however,
a set of ixed size k-mers may not be suicient to capture the sig-
nature of each transcript. We evaluated the efect of diferent ks
in abundance estimation for both Kallisto and RNA-Skim. Kallisto
allows users to set k to be any odd integer up to 31; RNA-Skim does
not have any restriction on the choice of k . For Kallisto, we indexed
the transcriptome using 6 diferent ks. For RNA-Skim, we selected
14 sets of sig-mers with diferent ks. We used these k-mers to esti-
mate the TPM of a simulated dataset containing 11,484 expressed
transcripts. We computed the absolute diferences between true
and estimated TPM. A smaller value indicates a better estimation.

Among these sets of k-mers, we marked the k that gave the best
prediction (smallest diference) for each transcript. Figure 4a shows
the distribution of the best k . We also plotted three transcripts
that displayed interesting estimation patterns over diferent ks in
Figures 4b-d. The estimations luctuate largely in RNA-Skim for
these transcripts, indicating that this method is very sensitive to
the choice of k . The variation is less severe in Kallisto; however, set-
ting k to 21 produces the best prediction for ENST00000626009,
but gives the worst prediction for both ENST00000265881 and
ENST00000357370. These results indicate that the optimal k varies
for diferent transcripts, and the selection of k has a substantial
inluence on the prediction accuracy.

4.2 k-mers Generation

Fleximer selects 6,299,554 sig-mers with sizes ranging from 25 to
60. Note that since the sequencing reads of our datasets were 75bp,
we set the upper bound of k to 60. The distribution of the sig-mers

size is illustrated in Figure 5a, where the frequencies are plotted
in log-10 scale. The majority of the sig-mers reside on our lower
bound; however, the rest of the sig-mers are equally distributed
among this range. On the other hand, using the default parameters,
RNA-Skim generates a set of 4,221,162 sig-mers with a ixed size
of 60. Using the same ixed size of 31, Sailish produces a set of
95,601,889 k-mers and Kallisto produces 94,945,357 k-mers. Figure 5b
compares the number of k-mers generated in diferent methods.
In terms of computational resources, Fleximer needs more time
to identify a set of optimal sig-mers than other methods since the
search space is much bigger. However, it is worth mentioning that
this step only needs to be executed once. Sadakane’s compressed
suix tree allows us to perform this step in less than 10G, which
requires less memory than Sailish and RNA-Skim.

4.3 Simulation Study

We evaluated the prediction accuracy using 15 simulated datasets.
The accuracy metrics include Pearson correlation, rank correlation,
and root-mean-square error (RMSE) (Supplementary C).

Figure 6 illustrates three metrics separately for diferent read
depths. Each bar shows the mean and standard deviation over 5
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respectively. Error bars are included using one standard deviation.

datasets. Results indicate that Fleximer and Sailish perform simi-
larly with consistent Pearson and rank correlations. The Pearson
correlations are slightly higher for Fleximer at diferent read depths.
Higher correlation values are better as the predictions are in the
same trend as the ground truth. On the other hand, lower residual
errors are better as the predictions are closer to the ground truth.
Fleximer presents the smallest RMSE among four methods. We also
evaluated the running time as shown in Figure 7. Fleximer requires
more time than others due to searching sig-mers of diferent sizes;
however, it scales linearly with the number of reads. All experi-
ments inish in less than 25 minutes (1500s). We further examined
the utilization of our representative sig-mers. We calculated the
fraction of reads recovered by each method. Figure 5c shows that
Fleximer is able to cover more than 90% of the reads with fewer
k-mers than Kallisto and Sailish. The sig-mers Fleximer used are
much more efective than the sig-mer set in RNA-Skim, which only
recovers less than 30% of the reads.

4.4 Human BodyMap 2.0 Project

Simulated datasets could not capture all of the biases presented in a
real RNA-Seq experiment; therefore, we evaluated the performance
of diferent methods using six datasets from the Human BodyMap
project. Figure 5d shows that on average, Fleximer is able to identify
a similar amount of reads in these datasets as Sailish and Kallisto

(> 60%), but with less amount of k-mers. This result is consistent as
demonstrated in the simulated studies.

Since we did not know the true abundance of each transcript,
we used the estimated abundance reported in Expression Atlas as
our ground standard. Expression Atlas provided expression val-
ues in RPKM on gene-level (instead of transcript-level). Two post-
processing techniques are applied to normalize these values. First,
we converted expression values reported in Expression Atlas to
TPM. Second, we aggregated the expressions of all transcript iso-
forms estimated in each method to represent the gene expression.
After normalization, we removed the non-protein coding genes
from Expression Atlas and conducted the analyses on gene-level.
Figure 8 shows an overall comparison of the number of expressed
genes identiied by each method, and Table 1 summarizes the com-
parison of expressed genes between each method and the ground
standard. Expressed genes are deined as those with TPM greater
than zero. Across six datasets, all methods identify a large number
of shared expressed genes as demonstrated by the large overlap in
six Venn diagrams. Each method identiies a few amount of unique
genes that are not picked up by others. Among the four methods,
RNA-Skim misses out the largest number of expressed genes re-
ported in Expression Atlas (false negative). However, Sailish and
Kallisto pick up around 100 more genes than Fleximer that are not
reported in Expression Atlas (false positive). We also experimented
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with diferent thresholds in deining the expressed genes (i.e. 0.1, 0.5,
and 1), and observed similar results as setting the TPM threshold
to 0.

We further evaluated the prediction power of four diferent meth-
ods against the values reported in Expression Atlas using all genes.
Figure 9 summarizes the average values of each accuracy metric
over six datasets. Fleximer demonstrates the best accuracy, with
the highest Pearson and rank correlations and the lowest RMSE.

5 CONCLUSION AND DISCUSSIONS

RNA-Seq has been the dominating technology in quantifying tran-
script abundance. The advent of this technology also comes with
numerous computational challenges, especially in analyzing a large
amount of data. Sailish, RNA-Skim, and Kallisto have recently de-
veloped to aim for a rapid quantiication using a pre-selected set
of k-mers. These k-mers are of the same length, and present a limi-
tation in characterizing diferent transcripts. We propose a novel
method that allows selecting k-mers of lexible sizes.

Our approach leverages the properties and structure of a suix
tree to eiciently discover these sig-mers, and selects a subset of

representative sig-mers for quantiication. In order to determine
the occurrences of these variable-length sig-mers in reads, Fleximer
utilizes the Aho-Corasick algorithm to scan through reads in lin-
ear time. The inal transcript abundance is estimated by the EM
algorithm using the read counts. The results show that Fleximer is
able to improve the accuracy of abundance estimations with fewer
sig-mers. This observation is due to the fact that these variable-
length sig-mers are capable of recognizing the signatures of each
read in the RNA-Seq datasets. In addition, we only need a small set
of sig-mers since they are unique enough to characterize diferent
transcripts. In the future work, we would like to further improve
the running time of our quantiication step with parallel computing.
We are also interested in exploring the possibilities of applying the
idea of lexible k-mers to other sequencing applications.
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A RETRIEVING ALL K-MERS

Suppose the average length of a transcript ism, the complexity of
retrieving and examining all k-mers with length less than and equal
to k in one transcript is

retrieve k-mers =m + (m − 1) + (m − 2) + · · · + (m − k + 1)

= km − (1 + 2 + · · · + (k − 1))

= km − (k × (k − 1)/2)

= O(km)

Given n transcripts, retrieving all k-mers is bounded by O(nkm).

B SOFTWARE COMPARISON

B.1 Sailish

The binary version of Sailish-0.9.2 was downloaded. We followed
the default setting of k-mer size for the indexing step (--kmerSize
= 31). To conduct a fair comparison of all software, we used a
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Figure 8: Evaluation of Human BodyMap. Venn diagrams showing the number of common and unique expressed genes iden-
tiied by diferent methods.

Table 1: Comparisonwith ExpressionAtlas. True positives (TP) refer to expressed genes that are identiied by eachmethod and
reported in Expression Atlas. False negatives (FN) refer to expressed genes that are reported in Expression Atlas but missed by
each method. False positives (FP) refer to genes that are identiied by each method but are not reported in Expression Atlas.

Method Fleximer RNA-Skim Sailish Kallisto

Evaluation TP FN FP TP FN FP TP FN FP TP FN FP

Male Adrenal 16567 99 1258 16046 620 744 16599 67 1363 16592 74 1392

Male Lung 16083 73 1225 15679 477 677 16109 47 1300 16100 56 1293

Male Liver 14411 66 2119 14135 342 1250 14433 44 2325 14426 51 2300

Female Brain 16574 113 1316 16155 532 786 16609 78 1437 16599 88 1442

Female Breast 16256 88 1362 15872 472 849 16286 58 1466 16273 71 1461

Female Colon 15725 82 1487 15400 407 883 15750 57 1612 15746 61 1616

single thread for both of the indexing and quantiication steps
(--threads = 1). All of our datasets contained single-end reads
with a read length of 75bp; therefore, we used these parameters in
the quantiication stage: -l -U --fldMean 75 and --fldSD 1.

B.2 Kallisto

The source code of Kallisto 0.43 was compiled with GCC/4.8.3. The
suggested kmer sizewas the same as Sailish.We set --kmer-size=31

for indexing. For quantiication, we used a single thread, --threads=1.
To adjust for efective length, we used --single -l 75 -s 1.

B.3 RNA-Skim

The source code was compiled with GCC/4.7.2. We ran rs_cluster
to generate the partition, with -rs_length=60. We ran rs_index

and rs_select to generate a set of sig-mers. In the motivating
example, rs_length was set to diferent values to evaluate the
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Figure 9: Accuracy Evaluations for Real Datasets on Gene-Level

efects of diferent ks . In both simulated and real studies, rs_length
was set to 60 as suggested by RNA-Skim. We ran rs_count and
rs_estimate using the default settings. We set -num_threads=1
to enforce the software running on one thread.

C ACCURACY METRICS

We used Pearson, rank correlations, and Root Mean Squared Error
(RMSE) to evaluate the accuracy of four diferent methods. Both
of the Pearson and rank correlations were computed between the
estimated abundance (TPM) and the true TPM. Given a list of n
transcripts with estimated TPM of x1,x2, . . . ,xn and their true

TPMs y1,y2, . . . ,yn , the RMSE was calculated as

√

∑

n

i=1 (xi−yi )
2

n .
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